(2015) Magnetic field driven 2D-3D crossover in the S=12 frustrated chain magnet LiCuVO4. Physical Review B, 91 (17). 174410.
Permanent WRAP URL:http://wrap.warwick.ac.uk/87838
Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Publisher statement: © 2015 American Physical Society
A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP URL' above for details on accessing the published version and note that access may require a subscription.For more information, please contact the WRAP Team at: wrap@warwick.ac.uk PHYSICAL REVIEW B 91, 174410 (2015) Magnetic field driven 2D-3D crossover in the S = We report on a heat-capacity study of high-quality single-crystal samples of LiCuVO 4 -a frustrated spin S = 1 2 chain system-in a magnetic field amounting to 3/4 of the saturation field. A detailed examination of magnetic phase transitions observed in this field range shows that although the low-field helical state clearly has three-dimensional properties, the field-induced spin-modulated phase turns out to be quasi-two-dimensional. The model proposed in this paper allows one to qualitatively understand this crossover, thus eliminating the presently existing contradictions in the interpretations of NMR and neutron-scattering measurements.