The effects of climate change on agricultural ecosystems are increasing, and droughts affect many regions. Drought has substantial ecological, social, and economic consequences for the sustainability of agricultural land. Many regions of the northern hemisphere have not experienced a high frequency of meteorological droughts in the past. For understanding the implications of climate change on grassland, analysis of the long-term climate data provides key information relevant for improved grassland management strategies. Using weather data and grassland production data from a long-term permanent grassland site, our aims were (i) to detect the most important drought periods that affected the region and (ii) to assess whether climate changes and variability significantly affected forage production in the last decade. For this purpose, long-term daily weather data (1961–2019) and the standardized precipitation index (SPI), De Martonne index (IDM), water deficit (WD), dryness index (DI), yield anomaly index (YAI), and annual yield loss index (YL) were used to provide a scientific estimation. The results show that, despite a positive trend in DI and a negative trend in WD and precipitation, the time-series trends of precipitation, WD, and DI indices for 1961–2019 were not significant. Extreme dry conditions were also identified with SPI values less than −2. The measured annual forage yield (2007–2018) harvested in a four-cut silage system (with and without organic N-fertilization) showed a strong correlation with WD (R = 0.64; p ˂ 0. 05). The main yield losses were indicated for the years 2008 and 2018. The results of this study could provide a perspective for drought monitoring, as well as drought warning, in grassland in northwest Europe.