We generalize the usual Doob maximal operator as well as the fractional maximal operator and introduce $$M_{\gamma ,s,\alpha }$$
M
γ
,
s
,
α
, a new fractional maximal operator for martingales. We prove that under the log-Hölder continuity condition of the variable exponents $$p(\cdot )$$
p
(
·
)
and $$q(\cdot )$$
q
(
·
)
, the maximal operator $$M_{\gamma ,s,\alpha }$$
M
γ
,
s
,
α
is bounded from the variable Lebesgue space $$L_{q(\cdot )}$$
L
q
(
·
)
to $$L_{p(\cdot )}$$
L
p
(
·
)
and from the variable Hardy space $$H_{q(\cdot )}$$
H
q
(
·
)
to $$L_{p(\cdot )}$$
L
p
(
·
)
, whenever $$0 \le \alpha <1$$
0
≤
α
<
1
, $$0<q_-\le q_+ \le 1/\alpha $$
0
<
q
-
≤
q
+
≤
1
/
α
, $$0<\gamma ,s<\infty $$
0
<
γ
,
s
<
∞
, $$1/p(\cdot )= 1/q(\cdot )- \alpha $$
1
/
p
(
·
)
=
1
/
q
(
·
)
-
α
and $$1/p_- - 1/p_+ < \gamma +s$$
1
/
p
-
-
1
/
p
+
<
γ
+
s
. Moreover, for $$\alpha =0$$
α
=
0
, the operator $$M_{\gamma ,s,0}$$
M
γ
,
s
,
0
generates equivalent quasi-norms on the Hardy spaces $$H_{p(\cdot )}$$
H
p
(
·
)
.