Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin-orbit coupling. So far, the only known three-dimensional topological insulator is Bi R ecently, the subject of time-reversal-invariant topological insulators has attracted great attention in condensed-matter physics [1][2][3][4][5][6][7][8][9][10][11][12] . Topological insulators in two or three dimensions have insulating energy gaps in the bulk, and gapless edge or surface states on the sample boundary that are protected by time-reversal symmetry. The surface states of a three-dimensional (3D) topological insulator consist of an odd number of massless Dirac cones, with a single Dirac cone being the simplest case. The existence of an odd number of massless Dirac cones on the surface is ensured by the Z 2 topological invariant 7-9 of the bulk. Furthermore, owing to the Kramers theorem, no time-reversalinvariant perturbation can open up an insulating gap at the Dirac point on the surface. However, a topological insulator can become fully insulating both in the bulk and on the surface if a timereversal-breaking perturbation is introduced on the surface. In this case, the electromagnetic response of three-dimensional (3D) topological insulators is described by the topological θ term of the form S θ = (θ /2π)(α/2π) d 3 x dt E · B, where E and B are the conventional electromagnetic fields and α is the fine-structure constant 10 . θ = 0 describes a conventional insulator, whereas θ = π describes topological insulators. Such a physically measurable and topologically non-trivial response originates from the odd number of Dirac fermions on the surface of a topological insulator.Soon after the theoretical prediction 5 , the 2D topological insulator exhibiting the quantum spin Hall effect was experimentally observed in HgTe quantum wells 6 . The electronic states of the 2D HgTe quantum wells are well described by a 2 + 1-dimensional Dirac equation where the mass term is continuously tunable by the thickness of the quantum well. Beyond a critical thickness, the Dirac mass term of the 2D quantum well changes sign from being positive to negative, and a pair of gapless helical edge states appears inside the bulk energy gap. This microscopic mechanism for obtaining topological insulators by inverting the bulk Dirac gap spectrum can also be generalized to other 2D and 3D systems. The guiding principle is to search for insulators where the