The problem of the informative frequency band (IFB) selection for local fault detection is considered in the paper. There are various approaches that are very effective in this issue. Most of the techniques are vibration-based and they are related to the cyclic impulses detection (associated with the local fault) in the background noise. However, when the background noise in the vibration signal has non-Gaussian impulsive behavior, the classical methods seem to be insufficient. Recently, new techniques were proposed by several authors and interesting approaches were tested for different non-Gaussian signals. We demonstrate the comparative analysis related to the results for three selected techniques proposed in recent years, namely the Alpha selector, Conditional Variance-based selector, and Spearman selector. The techniques seem to be effective for the IFB selection for the non-Gaussian distributed vibration signals. The main purpose of this article is to investigate how spectral overlapping of informative and non-informative impulsive components will affect diagnostic procedures. According to our knowledge, this problem was not considered in the literature for the non-Gaussian signals. Nevertheless, as we demonstrated by the simulations, the level of overlapping and the location of a center frequency of the mentioned frequency bands have a significant influence on the behavior of the considered selectors. The discussion about the effectiveness of each analyzed method is conducted. The considered problem is supported by real-world examples.