2024
DOI: 10.3390/axioms13030177
|View full text |Cite
|
Sign up to set email alerts
|

New Bounds for Three Outer-Independent Domination-Related Parameters in Cactus Graphs

Abel Cabrera-Martínez,
Juan Manuel Rueda-Vázquez,
Jaime Segarra

Abstract: Let G be a nontrivial connected graph. For a set D⊆V(G), we define D¯=V(G)∖D. The set D is a total outer-independent dominating set of G if |N(v)∩D|≥1 for every vertex v∈V(G) and D¯ is an independent set of G. Moreover, D is a double outer-independent dominating set of G if |N[v]∩D|≥2 for every vertex v∈V(G) and D¯ is an independent set of G. In addition, D is a 2-outer-independent dominating set of G if |N(v)∩D|≥2 for every vertex v∈D¯ and D¯ is an independent set of G. The total, double or 2-outer-independen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?