2000
DOI: 10.1002/(sici)1097-0177(200003)217:3<299::aid-dvdy8>3.0.co;2-g
|View full text |Cite
|
Sign up to set email alerts
|

Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
48
0
6

Year Published

2003
2003
2017
2017

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 94 publications
(57 citation statements)
references
References 42 publications
(44 reference statements)
1
48
0
6
Order By: Relevance
“…We envisage electrical signals as co-regulators of developmental and regenerative nerve growth and guidance, because physiological electrical signals exist in the central nervous system (CNS) in vivo (see below) and evoke subtle voltage-and time-dependent responses that are enhanced or suppressed by interaction of the electrical signals with other extracellular guidance cues. For example, cathodal attraction is enhanced by the neurotrophin brain-derived neurotrophic factor (BDNF), is suppressed by the endogenous cannabinoid anandamide and, at low EF strengths, is reversed by the neurotrophin NT3 to become anodal attraction (McCaig et al, 2000;Berghuis et al, 2007). Moreover, because the relative rate of retraction for anode-facing neurites is less than the rate of enhanced cathodal attraction, switching the EF polarity might promote growth in both directions over a prolonged period, as is required for regeneration of both ascending (sensory) and descending (motor) tracts in spinal-cord injury (McCaig, 1987).…”
Section: Electrical Guidance Of Nervesmentioning
confidence: 99%
“…We envisage electrical signals as co-regulators of developmental and regenerative nerve growth and guidance, because physiological electrical signals exist in the central nervous system (CNS) in vivo (see below) and evoke subtle voltage-and time-dependent responses that are enhanced or suppressed by interaction of the electrical signals with other extracellular guidance cues. For example, cathodal attraction is enhanced by the neurotrophin brain-derived neurotrophic factor (BDNF), is suppressed by the endogenous cannabinoid anandamide and, at low EF strengths, is reversed by the neurotrophin NT3 to become anodal attraction (McCaig et al, 2000;Berghuis et al, 2007). Moreover, because the relative rate of retraction for anode-facing neurites is less than the rate of enhanced cathodal attraction, switching the EF polarity might promote growth in both directions over a prolonged period, as is required for regeneration of both ascending (sensory) and descending (motor) tracts in spinal-cord injury (McCaig, 1987).…”
Section: Electrical Guidance Of Nervesmentioning
confidence: 99%
“…Electrical stimulation promotes not just the direction of axonal growth. 8 It is also an attractive guiding cue for promoting axonal regeneration in central and peripheral nerve injury repair. 9,10 It has been demonstrated that axonal regeneration and remyelination of the regenerated axons in large nerve defects are significantly enhanced by electrical stimulation also when the stimulation is applied to conductive scaffold; both motor and sensory functional Effects of pelvic somatic nerve stimulation in a complete flaccid paraplegic M Possover and A Forman recovery is significantly improved and muscle atrophy is partially reversed by stimulation localized at the conductive scaffold.…”
Section: Discussionmentioning
confidence: 99%
“…Доцільність застосування цього методу лікування обгрунтована результатами експериментальних досліджень, в яких встановлено, що електрична стимуляція нервових структур спричиняє деполяризацію клітинної мем-брани, що, залежно від сили подразнення, зумовлює виникнення місцевих потенціалів або потенціалів дії, які є основою для формування нервового імпульсу [12,13]. Експериментально доведено, що в електричному полі прискорюється ріст аксонів, зменшується астро-цитарна реакція на травму, астроцити формують свої відростки паралельно лініям електричного поля, що дозволяє запобігти формуванню грубого гліального рубця в місці травми [12,13]. Ще одним фактором впливу електричного поля при травмі спинного мозку є стимуляція регенерації аксонів та індукція колатерального спраутингу [13.…”
Section: дàвí³ñòь òðàвìèunclassified