2021
DOI: 10.48550/arxiv.2109.09316
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Neural Networks with Inputs Based on Domain of Dependence and A Converging Sequence for Solving Conservation Laws, Part I: 1D Riemann Problems

Abstract: Recent research works for solving partial differential equations (PDEs) with deep neural networks (DNNs) have demonstrated that spatiotemporal function approximators defined by auto-differentiation are effective for approximating nonlinear problems, e.g. the Burger's equation, heat conduction equations, Allen-Cahn and other reaction-diffusion equations, and Navier-Stokes equation. Meanwhile, researchers apply automatic differentiation in physics-informed neural network (PINN) to solve nonlinear hyperbolic s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 51 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?