Given the importance of forest ecosystems, the availability of reliable, spatially explicit information about the site-specific climate sensitivity of tree species is essential for implementing suitable adaptation strategies. In this study, airborne hyperspectral data were used to assess the response of deciduous species (dominated by European beech and Sessile and Pedunculate oak) to water stress during a summery dry spell. After masking canopy gaps, shaded crown areas and non-deciduous species, potentially indicative spectral indices, the Photochemical Reflectance Index (PRI), Moisture Stress Index (MSI), Normalized Difference Water Index (NDWI), and Chlorophyll Index (CI), were analyzed with respect to available maps of site-specific soil moisture regimes. PRI provided an important indication of site-specific photosynthetic stress on leaf level in relation to limitations in soil water availability. The CI, MSI and NDWI revealed statistically significant differences in total chlorophyll and water concentration at the canopy level. However, after reducing the canopy effects by normalizing these indices with respect to the structure-sensitive simple ratio (SR) vegetation index, it was not yet possible to identify site-specific concentration differences in leaf level at this early stage of the drought. The selected indicators were also tested with simulated EnMAP and Sentinel-2 data (derived from the original airborne data set). While PRI proved to be useful also in the spatial resolution of EnMAP (GSD = 30 m), this was not the case with Sentinel-2, owing to the lack of adequate spectral bands; the remaining indicators (MSI, CI, SR) were also OPEN ACCESS Remote Sens. 2015, 7 14228 successfully produced with Sentinel-2 data at superior spatial resolution (GSD = 10 m). The study confirms the importance of using earth observation systems for supplementing traditional ecological site classification maps, particularly during dry spells and heat waves when ecological gradients are increasingly reflected in the spectral response at the tree crown level. It also underlined the importance of using Sentinel-2 and EnMAP in synergy, as soon as both systems become available.