2016
DOI: 10.1103/physrevlett.116.213601
|View full text |Cite
|
Sign up to set email alerts
|

Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter

Abstract: By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of 1000 near-transform-limited single photons with high mutual indistinguishability. The HongOu-Mandel interference of two photons is measured as a function of their emission time separation varying from 13 ns to 14.7 μs, where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at a time scale of 0.7 μs. A temporal and spectral analysis reveals … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

3
157
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 182 publications
(161 citation statements)
references
References 59 publications
3
157
0
1
Order By: Relevance
“…In order to extend to multiple nodes and realize fault-tolerant operation, we require both distribution rates within the storage time of the entangled state and additional memory qubits. Using current state-ofthe-art light-collection strategies [43,44], the entanglement rate could be improved to 130 kHz. This rate approaches the inverse of electron-spin coherence times in self-assembled QDs [21,23,45], a crucial benchmark for fault tolerant scalability [46].…”
Section: H Y S I C a L R E V I E W L E T T E R Smentioning
confidence: 99%
“…In order to extend to multiple nodes and realize fault-tolerant operation, we require both distribution rates within the storage time of the entangled state and additional memory qubits. Using current state-ofthe-art light-collection strategies [43,44], the entanglement rate could be improved to 130 kHz. This rate approaches the inverse of electron-spin coherence times in self-assembled QDs [21,23,45], a crucial benchmark for fault tolerant scalability [46].…”
Section: H Y S I C a L R E V I E W L E T T E R Smentioning
confidence: 99%
“…В качестве перспективных квантовых систем, которые можно использовать в интегральных оптических схемах, предлагаются квантовые точки [69,70] и центры окраски в алмазе [71,72] -такие как NV-центры и SiV-центры. Анализируя подход в целом, в качестве основных недостат-ков обычно указывают: низкую эффективность сбора излучения (collection efficiency) точечного источника, в особенности находящегося в материале с высоким показателем преломле-ния; некогерентный характер однофотонных импульсов (отсутствие спектральной ограни-ченности) вследствие большого однородного уширения оптических переходов при комнат-ной температуре; уникальность ка ж дого [73,74], испускание более 1 000 фотонов с неразличимостью (видностью анти-корреляционного провала), превышающей 92% [75], высокая эффективность сбора излуче-ния (более 65%) [73,74,76], генерация перепутан-ных двухфотонных состояний на каскадных переходах [76,77]. В настоящее время активно ведется разработка однофотонных излучателей с электрической накачкой, источников, кото-рые встроены или сильно связаны с интеграль-ными оптическими схемами, а так же исследо-вание новых перспективных систем, таких как дефекты в двумерных материалах и углерод-ные нанотрубки (см.…”
Section: волоконно-оптические элементы и системыunclassified
“…Furthermore, it should be also noted that spontaneously emitted single-photon pulses are of exponential fall temporal form with sharp leading edge that complicates synchronization of light pulses when implementing quantum algorithms and reduces efficiency of storage and retrieval of single-photon pulses in quantum memory devices. Today the best parameters of single-photon sources are demonstrated by quantum dots InAs/GaAs at the temperatures of liquid helium: high quality of single-photon states (g 2 ( ) 0 ( ) < 0,01) [73,74], emission of over 1000 photons with indistinguishability (the visibility of the HOM dip) exceeding 92% [75], high collection efficiency (over 65%) [73,74,76], generation of entangled two-photon states via cascade transitions [76,77]. Currently, the topics of active research are electrically pumped single-photon sources, sources that are built-in or tightly connected with photonic chips, and new promising systems, such as defects in two-dimensional materials and carbon nano-tubes (see the recent review [78]).…”
Section: Fiber-optic Elements and Systemsmentioning
confidence: 99%
“…Cavity enhancement of quantum dots in III-V materials has enabled strong light-matter coupling 1 and record rates of indistinguishable photons. [2][3][4][5] Recent advances in diamond nanofabrication 6 have enabled the fabrication of free-standing photonic crystal cavities in diamond for the enhancement of the zero phonon line (ZPL) transition of silicon vacancy centers 7,8 and negatively charged nitrogen vacancy (NV) centers. [9][10][11][12][13][14][15][16][17][18][19] However, there are currently two main challenges limiting progress in scaling to multiple coupled emitter-cavity systems for distributed quantum networks.…”
mentioning
confidence: 99%