“…According to the mechanism of energy storage, ECs can be categorized into two classes [229]: (a) electrochemical double layer capacitors (EDLC), based on double-layer capacitance due to charge separation at the electrode/electrolyte interface, which thereby need materials with high specific surface area (e.g., activated carbon, CNTs), and (b) pseudocapacitors or supercapacitors, based on the pseudocapacitance of faradaic processes in active electrode materials such as transition metal oxides and conducting polymers. Because of their exceptional electronic properties, which allow ballistic transport of electrons over long nanotube lengths, CNTs have been considered a most promising candidate for electrochemical capacitors [230,231]. However, pure CNTs possess a rather low specific capacitance, typically about 10-40 F/g, which depends on the microtexture, purity, and electrolyte [231].…”