2019
DOI: 10.3390/mi10020138
|View full text |Cite
|
Sign up to set email alerts
|

Nanostructured Fe,Co-Codoped MoO3 Thin Films

Abstract: Molybdenum oxide (MoO3) and Fe,Co-codoped MoO3 thin films obtained by spray pyrolysis have been in-depth investigated to understand the effect of Co and Fe codoping on MoO3 thin films. The effect of Fe and Co on the structural, morphological and optical properties of MoO3 thin films have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDAX), optical and photoluminescence (PL) spectroscopy, and electropy… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
10
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 29 publications
(14 citation statements)
references
References 56 publications
1
10
0
2
Order By: Relevance
“…This result could be related to the higher surface roughness of the MgO thin layer obtained with [Mg 2+ ] = 0.15 mol•L −1 . transition metals or with rare earth elements also increases the surface roughness, which increases the specific contact surface between the MB solution and the MgO material, increasing the photocatalytic efficiency, as confirmed by Kamoun et al [34] for the MoO3 films co-doped with Fe or Co. We note that k2 is greater than k1, confirming the efficiency of the MgO material to decompose the MB dye. This study suggests that the MgO thin film is a good photocatalyst for removing organic pollutants in water.…”
Section: Photocatalysis Processsupporting
confidence: 86%
See 1 more Smart Citation
“…This result could be related to the higher surface roughness of the MgO thin layer obtained with [Mg 2+ ] = 0.15 mol•L −1 . transition metals or with rare earth elements also increases the surface roughness, which increases the specific contact surface between the MB solution and the MgO material, increasing the photocatalytic efficiency, as confirmed by Kamoun et al [34] for the MoO3 films co-doped with Fe or Co. We note that k2 is greater than k1, confirming the efficiency of the MgO material to decompose the MB dye. This study suggests that the MgO thin film is a good photocatalyst for removing organic pollutants in water.…”
Section: Photocatalysis Processsupporting
confidence: 86%
“…We can improve the kinetic constant by doping the MgO. In fact, doping or co-doping MgO with transition metals or with rare earth elements also increases the surface roughness, which increases the specific contact surface between the MB solution and the MgO material, increasing the photocatalytic efficiency, as confirmed by Kamoun et al [34] for the MoO 3 films co-doped with Fe or Co.…”
Section: Photocatalysis Processmentioning
confidence: 79%
“…Kamoun 等 [61] [61] Fig . 8 Transmission spectrum of undoped and Fe-Co-doped MoO3 films [61] 4 氧化钼电致变色器件 随着电致变色技术的发展,尤其是近年来电 致变色技术在手机上的应用,电致变色领域成为 人们关注的焦点。 单一 MoO3 电致变色器件的制备 依然是研究重点。本课题组用两种不同方法制备 了 MoO3 薄膜,并组装了电致变色器件。一种方法 是以 MoS2 为钼源,采用超声波辅助剥离 MoS2, 将其分散到乙醇溶液中,再旋涂到 ITO 透明导电 玻璃上,经过煅烧制备出 MoO3 薄膜 [62] 。由所制 备的 MoO3 薄膜组装成的电致变色器件在 580 nm 处的透过率调制幅度为 16.2%,着色响应时间为 3.0 s,褪色响应时间为 9.0 s。另一种方法是以钼 粉为钼源,通过水热法在 FTO 透明导电玻璃上直 接生长出 MoO3 薄膜 [63] 。组装成的电致变色器在 750 nm 处的透过率调制幅度为 13.3%,着色与褪 色响应时间分别为 3.5 和 2.9 s。 由单一氧化钼薄膜制备成的电致变色器件虽 然可以变色,但是光调制幅度较小、着色效率不 高,因此复合电致变色器件应运而生。氧化钼电 致变色器件存在颜色变化单一、响应速度慢的缺 陷。将氧化钼薄膜与其它电致变色薄膜组成复合 变色器件可以改善这些缺陷,使器件具有更好的 电致变色性能 [64] 。 张阁等 [65] [66] 引入共轭聚合物聚乙撑二氧噻吩-聚苯乙 烯磺酸盐(PEDOT:PSS)制备出有机-无机纳米复合 薄膜。使用逐层喷涂沉积技术分别制备出 W0.71Mo0.29O3 薄膜、W0.71Mo0.29O3/PEDOT:PSS 薄 膜、PEDOT:PSS 薄膜。观察到纳米复合电极的光 学对比度优于纯 PEDOT:PSS 和 W0.71Mo0.29O3 电极, 其性能比纯薄膜组合的线性预测对比度高 23%。 由图 9(a)动力学特征表明, 以光学对比度变化 90% 所需的时间定义为切换时间,PEDOT:PSS 着色时 间和漂白时间分别为 6.5 和 3 s。相同条件下纯 W0.71Mo0.29O3 电极着色时间为 22.1 s,褪色时间为 13.9 s。 而在 W0.71Mo0.29O3 电极中引入 PEDOT:PSS 可使响应时间缩短 20% (着色时间 17.9 s,褪色时 间 10.5 s) 。 从图 9(b) 电 极 的 着 色 效 率 看 出 W0.71Mo0.29O3/PEDOT:PSS 电极的着色效率为 52.8 cm 2 • C -1 ,是 W0.71Mo0.29O3 电极 21.7 cm 2 • C -1 的两倍。 图 9(c) 为 循 环 稳 定 性 , 从 图 中 可 以 看 出 W0.71Mo0.29O3/PEDOT:PSS 电极在 300 个循环后的 对比度保持率为 84.2%。 图 9 W0.71Mo0.29O3 薄膜, PEDOT:PSS 薄膜和 W0.71Mo0.29O3/PEDOT:PSS 薄膜 632.8 nm 下的原位动力学特征(a), 电极的着色效 率(b)和循环稳定性(c) [66] 图 9 W0.71Mo0.29O3 film, PEDOT:PSS film and W0.71Mo0.29O3/PEDOT:PSS film in-situ kinetic properties at 632.8 nm (a), coloration efficiencies of the electrodes (b), and cycling stabilities (c) [66] 除了制备复合电致变色器件外,一种既变色 又储能的电致变色器件引起了人们的注意,这种 器件即双功能电致变色器件 [67] 。这类器件的电致 变色材料从最初的普鲁士蓝(Prussian Blue, PB) [68] , 发展到 WO3 [69] 、钨钼复合氧化物 [70] 、聚吡咯 [71] 等。 李海增等 [70] 通过一种自上而下的方法即将 Mo 粉添加到 HNO3 溶液中,搅拌、回流形成白色悬 浮液,离心、洗涤后将白色产物分散在去离子水 中以形成前驱体溶液,制备出 MoO3 胶体。再通过 湿 化 学 法 将 高 度 分 散 的 MoO3 胶体嵌入 W0.71Mo0.29O3 中, 以形成 MoO3-W0.71Mo0.29O3 纳米 复合材料,经喷涂得到 MoO3-W0.71Mo0.29O3 复合 薄膜,以此为工作电极与喷涂的 NiO 对电极组装 成互补型储能智能窗器件,如图 10 所示。互补型 电致变色电池在-2.5 V 下着色 1 min,可为 LED 供电 10 min。 图 10 互补型电致变色电池的示意图(a), 单活性层电致变色电池(b), 互补型电致变色电池的可见-近红外近红外透射光 谱(c),单层器件和互补型器件的放电曲线(电流密度为 0.05 mA• cm -2 )(d), 以及互补型电致变色电池在-2.5 V 着色后可以使 LED 点亮 10 min 以上(e) [70] 10 min after being colored at -2.5 V (e) [70] 5 结束语…”
Section: Fe、co 共掺杂 Moo3unclassified
“…Но в литературе по-прежнему мало внимания уделяется вопросу, сопровождается ли поглощение света перовскитом повышением локальной температуры, которое также может приводить к деградации (пиролиз), или же тепло рассеивается внутри элемента [3]. Чередующиеся функциональные (фотоабсорбирующие, зарядотранспортные, буферные) слои с различной теплопроводностью -неорганические, например оксид молибдена (MoO 3 ), ̹ = 25 W/(m • K) [6], и молекулярные, например металлофталоцианин, ̹ < 0.6 W/(m • K) [7], -могут влиять на эффективность теплоотведения с пленки перовскита на подложку. Следует отметить, что большое число интерфейсов, характерное для многослойного гибридного фотовольтаического преобразователя, является причиной значительных погрешностей при измерении температуры оптическими методами (например, с помощью пирометров) вследствие интерференционных эффектов.…”
unclassified