In vacuo high-sensitivity low energy ion scattering (HS-LEIS) has been used to investigate the initial growth stages of DC sputtered Ru on top of Si, SiN and SiO2. The high surface sensitivity of this technique allowed an accurate determination of surface coverages and thicknesses required for closing the Ru layer on all three substrates. The Ru layer closes (100% Ru surface signal) at about 2.0, 3.2 and 4.7 nm on top of SiO2, SiN and Si, respectively. In-depth Ru concentration profiles can be reconstructed from the Ru surface coverages when considering an error function like model. The large intermixing (4.7 nm) for the Ru-on-Si system is compared to the reverse system (Si-on-Ru), where only 0.9 nm intermixing occurs. The difference is predominantly explained by the strong Si surface segregation that is observed for Ru-on-Si. This surface segregation effect is also observed for Ru-on-SiN, but is absent for Ruon-SiO2. For this last system, in vacuo HS-LEIS analysis revealed surface oxygen directly after deposition, which suggests an oxygen surface segregation effect for Ru-on-SiO2. In vacuo XPS measurements confirmed this hypothesis based on the reaction of Ru with oxygen from the SiO2, followed by oxygen surface segregation.