DNA-based switches are structure-switching biomolecules widely employed in different bioanalytical applications. Of particular interest are DNA-based switches whose activity is regulated through the use of allostery. Allostery is a naturally occurring mechanism in which ligand binding induces the modulation and fine control of a connected biomolecule function as a consequence of changes in concentration of the effector. Through this general mechanism, many different allosteric DNA-based switches able to respond in a highly controlled way at the presence of a specific molecular effector have been engineered. Here, we discuss how to design allosterically regulated DNA-based switches and their applications in the field of molecular sensing, diagnostic and drug release.