The Z-line is a multifunctional macromolecular complex that anchors sarcomeric actin filaments, mediates interactions with intermediate filaments and costameres, and recruits signaling molecules. Antiparallel alpha-actinin homodimers, present at Z-lines, cross-link overlapping actin filaments and also bind other cytoskeletal and signaling elements. Two LIM domain containing proteins, alpha-actinin associated LIM protein (ALP) and muscle LIM protein (MLP), interact with alpha-actinin, distribute in vivo to Z-lines or costameres, respectively, and, when absent, are associated with heart disease. Here we describe the behavior of ALP and MLP during myofibrillogenesis in cultured embryonic chick cardiomyocytes. As myofibrils develop, ALP and MLP are observed in distinct distribution patterns in the cell. ALP is coincident with alpha-actinin from the first stage of myofibrillogenesis and co-distributes with alpha-actinin to Z-lines and intercalated discs in mature myofibrils. Interestingly, we also demonstrate using ALP-GFP transfection experiments and an in vitro binding assay that the ALP-alpha-actinin binding interaction is not required to target ALP to the Z-line. In contrast, MLP localization is not co-incident with that of alpha-actinin until late stages of myofibrillogenesis; however, it is present in premyofibrils and nascent myofibrils prior to the incorporation of other costameric components such as vinculin, vimentin, or desmin. Our observations support the view that ALP function is required specifically at actin anchorage sites. The subcellular distribution pattern of MLP during myofibrillogenesis suggests that it functions during differentiation prior to the establishment of costameres.