Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Mathematical expression retrieval is an essential component of mathematical information retrieval. Current mathematical expression retrieval research primarily targets single modalities, particularly text, which can lead to the loss of structural information. On the other hand, multimodal research has demonstrated promising outcomes across different domains, and mathematical expressions in image format are adept at preserving their structural characteristics. So we propose a multi-modal retrieval model for mathematical expressions based on ConvNeXt and HFS to address the limitations of single-modal retrieval. For the image modal, mathematical expression retrieval is based on the similarity of image features and symbol-level features of the expression, where image features of the expression image are extracted by ConvNeXt, while symbol-level features are obtained by the Symbol Level Features Extraction (SLFE) module. For the text modal, the Formula Description Structure (FDS) is employed to analyze expressions and extract their attributes. Additionally, the application of the Hesitant Fuzzy Set (HFS) theory facilitates the computation of hesitant fuzzy similarity between mathematical queries and candidate expressions. Finally, Reciprocal Rank Fusion (RRF) is employed to integrate rankings from image modal and text modal retrieval, yielding the ultimate retrieval list. The experiment was conducted on the publicly accessible ArXiv dataset (containing 592,345 mathematical expressions) and the NTCIR-mair-wikipedia-corpus (NTCIR) dataset.The MAP@10 values for the multimodal RRF fusion approach are recorded as 0.774. These substantiate the efficacy of the multi-modal mathematical expression retrieval approach based on ConvNeXt and HFS.
Mathematical expression retrieval is an essential component of mathematical information retrieval. Current mathematical expression retrieval research primarily targets single modalities, particularly text, which can lead to the loss of structural information. On the other hand, multimodal research has demonstrated promising outcomes across different domains, and mathematical expressions in image format are adept at preserving their structural characteristics. So we propose a multi-modal retrieval model for mathematical expressions based on ConvNeXt and HFS to address the limitations of single-modal retrieval. For the image modal, mathematical expression retrieval is based on the similarity of image features and symbol-level features of the expression, where image features of the expression image are extracted by ConvNeXt, while symbol-level features are obtained by the Symbol Level Features Extraction (SLFE) module. For the text modal, the Formula Description Structure (FDS) is employed to analyze expressions and extract their attributes. Additionally, the application of the Hesitant Fuzzy Set (HFS) theory facilitates the computation of hesitant fuzzy similarity between mathematical queries and candidate expressions. Finally, Reciprocal Rank Fusion (RRF) is employed to integrate rankings from image modal and text modal retrieval, yielding the ultimate retrieval list. The experiment was conducted on the publicly accessible ArXiv dataset (containing 592,345 mathematical expressions) and the NTCIR-mair-wikipedia-corpus (NTCIR) dataset.The MAP@10 values for the multimodal RRF fusion approach are recorded as 0.774. These substantiate the efficacy of the multi-modal mathematical expression retrieval approach based on ConvNeXt and HFS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.