2003
DOI: 10.4064/aa107-2-1
|View full text |Cite
|
Sign up to set email alerts
|

Multivariate Diophantine equations with many solutions

Abstract: Among other things we show that for each n-tuple of positive rational numbers (a 1 , . . . , a n ) there are sets of primes S of arbitrarily large cardinality s such that the solutions of the equation a 1 x 1 +• • •+a n x n = 1 with x 1 , . . . , x n S-units are not contained in fewer than exp((4 + o(1))s 1/2 (log s) −1/2 ) proper linear subspaces of C n . This generalizes a result of Erdős, Stewart and Tijdeman [7] for S-unit equations in two variables. Further, we prove that for any algebraic number field K … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
7
0
1

Year Published

2004
2004
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(8 citation statements)
references
References 20 publications
0
7
0
1
Order By: Relevance
“…Hildebrand a démontré (8) que la fonction r est strictement croissante sur [1; ∞[. Le comportement asymptotique de la fonction r peutêtre déduit de celui de la fonction ξ par le biais de la formule de Alladi-de Bruijn (voir par exemple [27], théorème III.5.13), qui fournit une formule asymptotique pour (v) en fonction de ξ(v).…”
Section: •2 Dérivée Logarithmique De La Fonction De Dickmanunclassified
“…Hildebrand a démontré (8) que la fonction r est strictement croissante sur [1; ∞[. Le comportement asymptotique de la fonction r peutêtre déduit de celui de la fonction ξ par le biais de la formule de Alladi-de Bruijn (voir par exemple [27], théorème III.5.13), qui fournit une formule asymptotique pour (v) en fonction de ξ(v).…”
Section: •2 Dérivée Logarithmique De La Fonction De Dickmanunclassified
“…For example, in 1984 Evertse [10] used Diophantine approximation methods to give upper bounds, depending only on s (and, in the number field case, also the degree of the field), for the number of S-unit solutions to equations like a + 1 = c. In 1988, Erdős, Stewart and Tijdeman [9] used methods from combinatorial number theory, in particular some results they proved about the largest prime factor of a product of sums, to show the existence of sets S for which a + b = c has many S-unit solutions with a, b, c coprime integers. In 2003, Evertse, Moree, Stewart and Tijdeman [11] gave an extension of Erdős, Stewart and Tijdeman's result to weighted S-unit equations in n variables 1 (as Date: 18th August 2011. The author is supported by a studentship from the Engineering and Physical Sciences Research Council of the United Kingdom.…”
Section: Introductionmentioning
confidence: 99%
“…The author is supported by a studentship from the Engineering and Physical Sciences Research Council of the United Kingdom. 1 When comparing Evertse, Moree, Stewart and Tijdeman's paper [11] with other results, one should carefully note that they allow the variables in their equations to take rational, and not just integer, values. Their results about the equation a 1 + a 2 + ... + a n = 1, n ≥ 2, with rational variables a i , translate into results about the integer equation a 1 + a 2 + ... + a n = a n+1 .…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The first goal of this paper is to establish a result comparable to (5) in the case when the rational field Q is replaced by an algebraic number field K. Let K be a number field with degree n ≥ 2 and ring of integers O K . For any ideal a of O K , define (6) P (a) = max{N (p) : p|a} where p denotes a prime ideal with norm N (p), and let P (O K ) = 1. Define Ψ K (x, y) by (7) Ψ K (x, y) = |{a : N (a) ≤ x, P (a) ≤ y}| .…”
Section: Introductionmentioning
confidence: 99%