2022
DOI: 10.1109/access.2022.3201149
|View full text |Cite
|
Sign up to set email alerts
|

Multivariable Coordinated Nonlinear Gain Droop Control for PV-Battery Hybrid DC Microgrid Access System via a T-S Fuzzy Decision Approach

Abstract: The PV-Battery hybrid DC microgrid is an important structural form for distributed renewable energy microgrid applications. This paper focuses on improving the access utilization rate of PV-Battery energy and enhancing the access stability of the DC bus voltage. Firstly, based on the voltage droop control method for multi-source access system, the relationship between the power margin of PV-Battery energy and the regulation of DC bus voltage deviation is analyzed. Then, a multivariable T-S fuzzy decision appro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 32 publications
(35 reference statements)
0
0
0
Order By: Relevance
“…The designed method, although it has improved the efficiency of the system, employs electrical components such as bi-directional converters and inductors that are too idealized and do not take into account the presence of uncertainties at the same time, which does not achieve a fast tracking of the errors. Literature (Mao et al, 2022) tries to solve this problem by incorporating T-S fuzzy control when dealing with nonlinear state variables, so as to improve the utilization of PV cells connected to the microgrid while maintaining the stability of the bus voltage, but the procedure is relatively time consuming. The maintenance of system stability is an important task in control theory.…”
Section: Introductionmentioning
confidence: 99%
“…The designed method, although it has improved the efficiency of the system, employs electrical components such as bi-directional converters and inductors that are too idealized and do not take into account the presence of uncertainties at the same time, which does not achieve a fast tracking of the errors. Literature (Mao et al, 2022) tries to solve this problem by incorporating T-S fuzzy control when dealing with nonlinear state variables, so as to improve the utilization of PV cells connected to the microgrid while maintaining the stability of the bus voltage, but the procedure is relatively time consuming. The maintenance of system stability is an important task in control theory.…”
Section: Introductionmentioning
confidence: 99%