In this paper, we propose a new wavelet-based reconstruction method suited to three-dimensional (3-D) cone-beam (CB) tomography. It is derived from the Feldkamp algorithm and is valid for the same geometrical conditions. The demonstration is done in the framework of nonseparable wavelets and requires ideally radial wavelets. The proposed inversion formula yields to a filtered backprojection algorithm but the filtering step is implemented using quincunx wavelet filters. The proposed algorithm reconstructs slice by slice both the wavelet and approximation coefficients of the 3-D image directly from the CB projection data. The validity of this multiresolution approach is demonstrated on simulations from both mathematical phantoms and 3-D rotational angiography clinical data. The same quality is achieved compared with the standard Feldkamp algorithm, but in addition, the multiresolution decomposition allows to apply directly image processing techniques in the wavelet domain during the inversion process. As an example, a fast low-resolution reconstruction of the 3-D arterial vessels with the progressive addition of details in a region of interest is demonstrated. Other promising applications are the improvement of image quality by denoising techniques and also the reduction of computing time using the space localization of wavelets.