2022
DOI: 10.3389/fphy.2022.1016009
|View full text |Cite
|
Sign up to set email alerts
|

Multiparticle quantum walk–based error correction algorithm with two-lattice Bose–Hubbard model

Abstract: When the evolution of discrete time quantum walk is carried out for particles, the ramble state is prone to error due to the influence of system noise. A multiparticle quantum walk error correction algorithm based on the two-lattice Bose–Hubbard model is proposed in this study. First, two point Bose–Hubbard models are constructed according to the local Euclidean generator, and it is proved that the two elements in the model can be replaced arbitrarily. Second, the relationship between the transition intensity … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?