2016
DOI: 10.3842/sigma.2016.054
|View full text |Cite
|
Sign up to set email alerts
|

Multidimensional Toda Lattices: Continuous and Discrete Time

Abstract: Abstract. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
28
0
3

Year Published

2017
2017
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(31 citation statements)
references
References 59 publications
0
28
0
3
Order By: Relevance
“…Similar calculations for each pair of the spectral transformations (11) also yield ( − ( 1 ) 1 ) ( 1 +1, 2 , 1 +1, 2 ) ( ) = ( 1 , 2 , 1 +1,2 )̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 )( ) =̃ ( 1 +1, 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 ) ( ), ( − ( 1 ) 1 ) ( 1 , 2 , 1 +1, 2 ) ( ) = ( 1 , 2 , 1 +1, 2 )̃ ( 1 , 2 +1, 1 , 2 ) ( 1 , 2 +1, 1 , 2 ) ( ) =̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 ) ( 1 , 2 +1, 1 , 2 ) ( ), ( 1 +1, 2 , 1 , 2 ) ( ) =̃ ( 1 +1, 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 +1) ( 1 , 2 , 1 , 2 +1) ( ) = ( 1 , 2 , 1 , 2 )̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 +1) ( ) ( 1 , 2 , 1 , 2 ) ( ) =̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 +1) ( 1 , 2 +1, 1 , 2 +1) ( ) = ( 1 , 2 , 1 , 2 )̃ ( 1 , 2 +1, 1 , 2 ) ( 1 , 2 +1, 1 , 2 +1) ( ), ( − ( 1 ) 1 ) ( 1 , 2 , 1 +1, 2 ) ( ) =̃ ( 1 , 2 , 1 +1, 2 )̃ ( 1 , 2 , 1 , 2 +1) ( 1 , 2 , 1 , 2 +1) ( ) =̃ ( 1 , 2 , 1 , 2 )̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 +1) ( ),whose elements give the relations( 1 , 2 , 1 +1, 2 ) +̃ ( 1 , 2 , 1 , 2 ) +1 = ( 1 , 2 , 1 , 2 ) +1 +̃ ( 1 +1, 2 , 1 , 2 ) , (13a) ( 1 , 2 , 1 +1, 2 ) ̃ ( 1 , 2 , 1 , 2 ) = ( 1 , 2 , 1 , 2 ) ̃ ( 1 +1, 2 , 1 , 2 ) , (13b) ( 1 , 2 +1, 1 , 2 ) + ( 1 , 2 , 1 +1, 2 ) −1 =̃ ( 1 , 2 , 1 , 2 ) + ( 1 , 2 , 1 , 2 ) , (14a) ( 1 , 2 +1, 1 , 2 ) ( 1 , 2 , 1 +1, 2 ) =̃ ( 1 , 2 , 1 , 2 ) +1 ( 1 , 2 , 1 , 2 ) , (14b) ( 1 , 2 , 1 , 2 +1) +̃ ( 1 +1, 2 , 1 , 2 ) −1 = ( 1 , 2 , 1 , 2 ) +̃ ( 1 , 2 , 1 , 2 ) , (15a) ( 1 , 2 , 1 , 2 +1) ̃ ( 1 +1, 2 , 1 , 2 ) = ( 1 , 2 , 1 , 2 ) +1̃ ( 1 , 2 , 1 , 2 ) , (15b) ( 1 , 2 , 1 , 2 +1) +̃ ( 1 , 2 , 1 , 2 ) = ( 1 , 2 , 1 , 2 ) +̃ ( 1 , 2 +1, 1 , 2 ) , (16a) ( 1 , 2 , 1 , 2 +1) ̃ ( 1 , 2 , 1 , 2 ) +1 = ( 1 , 2 , 1 , 2 ) +1̃ ( 1 , 2 +1, 1 , 2 ) , (16b) ( 1 , 2 , 1 , 2 +1) +̃ ( 1 , 2 , 1 +1, 2 ) −1 =̃ ( 1 , 2 , 1 , 2 ) +̃ ( 1 , 2 , 1 , 2 ) , (17a) ( 1 , 2 , 1 , 2 +1) ̃ ( 1 , 2 , 1 +1, 2 ) =̃ ( 1 , 2 , 1 , 2 ) +1̃ ( 1 , 2 , 1 , 2 )(17b)for = 0, 1, 2, … with the boundary condition (12c) and( 1 , 2 , 1 , 2 ) −1 = 0 for all 1 , 2 , 1 , 2 ∈ ℤ.In these discrete equations, the parameters( 1 ) 1 and ( 2 ) 2 do not appear explicitly. The parameters are, in fact, embedded into boundary conditions as follows.For equations (13) Subtraction of (10a) from (10c) yields the relation ( − ( 1 )1 )( 1 , 2 , 1 +1, 2 ) ( ) = ( 1 +1, 2 , 1 , 2 ) ( ) + ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 ) ( ),(18)where ( 1 , 2 , 1 , 2 ) ≔̃ ( 1 , 2 , 1 , 2 ) − ( 1 , 2 , 1 , 2 ) .…”
mentioning
confidence: 67%
See 2 more Smart Citations
“…Similar calculations for each pair of the spectral transformations (11) also yield ( − ( 1 ) 1 ) ( 1 +1, 2 , 1 +1, 2 ) ( ) = ( 1 , 2 , 1 +1,2 )̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 )( ) =̃ ( 1 +1, 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 ) ( ), ( − ( 1 ) 1 ) ( 1 , 2 , 1 +1, 2 ) ( ) = ( 1 , 2 , 1 +1, 2 )̃ ( 1 , 2 +1, 1 , 2 ) ( 1 , 2 +1, 1 , 2 ) ( ) =̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 ) ( 1 , 2 +1, 1 , 2 ) ( ), ( 1 +1, 2 , 1 , 2 ) ( ) =̃ ( 1 +1, 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 +1) ( 1 , 2 , 1 , 2 +1) ( ) = ( 1 , 2 , 1 , 2 )̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 +1) ( ) ( 1 , 2 , 1 , 2 ) ( ) =̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 +1) ( 1 , 2 +1, 1 , 2 +1) ( ) = ( 1 , 2 , 1 , 2 )̃ ( 1 , 2 +1, 1 , 2 ) ( 1 , 2 +1, 1 , 2 +1) ( ), ( − ( 1 ) 1 ) ( 1 , 2 , 1 +1, 2 ) ( ) =̃ ( 1 , 2 , 1 +1, 2 )̃ ( 1 , 2 , 1 , 2 +1) ( 1 , 2 , 1 , 2 +1) ( ) =̃ ( 1 , 2 , 1 , 2 )̃ ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 +1) ( ),whose elements give the relations( 1 , 2 , 1 +1, 2 ) +̃ ( 1 , 2 , 1 , 2 ) +1 = ( 1 , 2 , 1 , 2 ) +1 +̃ ( 1 +1, 2 , 1 , 2 ) , (13a) ( 1 , 2 , 1 +1, 2 ) ̃ ( 1 , 2 , 1 , 2 ) = ( 1 , 2 , 1 , 2 ) ̃ ( 1 +1, 2 , 1 , 2 ) , (13b) ( 1 , 2 +1, 1 , 2 ) + ( 1 , 2 , 1 +1, 2 ) −1 =̃ ( 1 , 2 , 1 , 2 ) + ( 1 , 2 , 1 , 2 ) , (14a) ( 1 , 2 +1, 1 , 2 ) ( 1 , 2 , 1 +1, 2 ) =̃ ( 1 , 2 , 1 , 2 ) +1 ( 1 , 2 , 1 , 2 ) , (14b) ( 1 , 2 , 1 , 2 +1) +̃ ( 1 +1, 2 , 1 , 2 ) −1 = ( 1 , 2 , 1 , 2 ) +̃ ( 1 , 2 , 1 , 2 ) , (15a) ( 1 , 2 , 1 , 2 +1) ̃ ( 1 +1, 2 , 1 , 2 ) = ( 1 , 2 , 1 , 2 ) +1̃ ( 1 , 2 , 1 , 2 ) , (15b) ( 1 , 2 , 1 , 2 +1) +̃ ( 1 , 2 , 1 , 2 ) = ( 1 , 2 , 1 , 2 ) +̃ ( 1 , 2 +1, 1 , 2 ) , (16a) ( 1 , 2 , 1 , 2 +1) ̃ ( 1 , 2 , 1 , 2 ) +1 = ( 1 , 2 , 1 , 2 ) +1̃ ( 1 , 2 +1, 1 , 2 ) , (16b) ( 1 , 2 , 1 , 2 +1) +̃ ( 1 , 2 , 1 +1, 2 ) −1 =̃ ( 1 , 2 , 1 , 2 ) +̃ ( 1 , 2 , 1 , 2 ) , (17a) ( 1 , 2 , 1 , 2 +1) ̃ ( 1 , 2 , 1 +1, 2 ) =̃ ( 1 , 2 , 1 , 2 ) +1̃ ( 1 , 2 , 1 , 2 )(17b)for = 0, 1, 2, … with the boundary condition (12c) and( 1 , 2 , 1 , 2 ) −1 = 0 for all 1 , 2 , 1 , 2 ∈ ℤ.In these discrete equations, the parameters( 1 ) 1 and ( 2 ) 2 do not appear explicitly. The parameters are, in fact, embedded into boundary conditions as follows.For equations (13) Subtraction of (10a) from (10c) yields the relation ( − ( 1 )1 )( 1 , 2 , 1 +1, 2 ) ( ) = ( 1 +1, 2 , 1 , 2 ) ( ) + ( 1 , 2 , 1 , 2 ) ( 1 , 2 , 1 , 2 ) ( ),(18)where ( 1 , 2 , 1 , 2 ) ≔̃ ( 1 , 2 , 1 , 2 ) − ( 1 , 2 , 1 , 2 ) .…”
mentioning
confidence: 67%
“…It is known that equations (2) are derived from the discrete Toda lattice through ultradiscretization [15]. The right side of figure 1 shows an example of the time evolution of the ultradiscrete Toda lattice (2), in which the initial values are chosen to correspond to the initial state of the original BBS on the left side. We can introduce some extended rules to the original BBS.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…There were several results in this direction. In [8,9], equations (1.10) and (1.11) were combined to obtain the electro-magnetic Schrödinger operator defined on 2 (Z d + ). These operators were symmetrized but only in very special cases.…”
mentioning
confidence: 99%
“…, ), принадлежащих всей ре-шётке Z + , уместно рассматривать с точки зрения спектральной теории мно-гомерных дискретных операторов. Некоторые шаги в этом направлении были сделаны в [20,21,22], где, в частности, многомерный дискретный электромаг-нитный оператор Шредингера был получен путём усреднения рекурренций (1.7). Однако общих классов разностных потенциалов { ⃗ , , ⃗ , } =1 , коэффи-циентов, допускающих симметризацию, приводящую к самосопряжённому в 2 (Z + ) электромагнитному оператору Шредингера, пока получить не удалось.…”
unclassified