2010
DOI: 10.1155/2010/602373
|View full text |Cite
|
Sign up to set email alerts
|

Multichannel Blind Deconvolution Using the Stochastic Calculus for the Estimation of the Central Arterial Pressure

Abstract: A new tool for estimation of both the central arterial pressure and the unknown channel dynamics has been developed. Given two peripheral waveform measurements, this new signal processing algorithm generates two models that represent the distinct branch dynamic behavior associated with the measured signals. The framework for this methodology is based on a Multichannel Blind Deconvolution (MBD) technique that has been reformulated to use Stochastic Calculus (SC). The technique is based on MBD of dynamic system … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2012
2012
2020
2020

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 17 publications
0
2
0
Order By: Relevance
“…The methodology, when applied to coprime multichannel systems with unknown input signal, determines the channel dynamics and then deconvolves the input signal by exploiting the correlation relationship between the channels. In particular, the input-deconvolution step of the methodology has employed various techniques, such as direct inverse filtering (IF) [7,20], least-squares and maximum-likelihood-type deconvolution [21,22], and the design of dedicated deconvolution filters [23,24]. Direct inverse filtering has been a straightforward choice due to the nonminimum phase nature of the channel dynamics associated with the BP wave propagation in the arteries [25].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The methodology, when applied to coprime multichannel systems with unknown input signal, determines the channel dynamics and then deconvolves the input signal by exploiting the correlation relationship between the channels. In particular, the input-deconvolution step of the methodology has employed various techniques, such as direct inverse filtering (IF) [7,20], least-squares and maximum-likelihood-type deconvolution [21,22], and the design of dedicated deconvolution filters [23,24]. Direct inverse filtering has been a straightforward choice due to the nonminimum phase nature of the channel dynamics associated with the BP wave propagation in the arteries [25].…”
Section: Introductionmentioning
confidence: 99%
“…The leastsquares and maximum likelihood-type deconvolution techniques were developed primarily for finite impulse response channel dynamics [26,27]. Hence, central aortic BP deconvolution based on these techniques involved the finite impulse response filter approximation of the BP propagation channel dynamics [21,22]. To relax such restrictions, design methodologies for the input deconvolution filters applicable to coprime multichannel systems with infinite impulse response channel dynamics have been developed [23,24,28].…”
Section: Introductionmentioning
confidence: 99%