Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.
Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.