2006 IEEE International Conference on Automation, Quality and Testing, Robotics 2006
DOI: 10.1109/aqtr.2006.254498
|View full text |Cite
|
Sign up to set email alerts
|

MRAC and FMRLC for a plant with time varying parameters

Abstract: This paper presents a comparative analysis of two adaptive control methods used in case of time varying plant parameters. The first adaptive control method is based on the stability theory of Lyapunov and the other one is based on fuzzy logic. Also, the performances of the proposed control algorithms are evaluated with simulation environment. These control structures are designed for local compensation of the non-linear interactions and unknown payload variations in flexible-link gear drive.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
3

Year Published

2013
2013
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 5 publications
0
4
0
3
Order By: Relevance
“…3, utilizes a learning mechanism that observes data from a fuzzy control system, characterizes its current performance, and automatically adjusts the knowledge base of the fuzzy controller so that the closed-lop system performans according to the specifications given by the reference Bulut M., (2021) model . There are four components in this system: the plant, reference model, fuzzy controller that will be tuned, and fuzzy inverse model [19].…”
Section: Fuzzy Model Reference Learning Controlmentioning
confidence: 99%
“…3, utilizes a learning mechanism that observes data from a fuzzy control system, characterizes its current performance, and automatically adjusts the knowledge base of the fuzzy controller so that the closed-lop system performans according to the specifications given by the reference Bulut M., (2021) model . There are four components in this system: the plant, reference model, fuzzy controller that will be tuned, and fuzzy inverse model [19].…”
Section: Fuzzy Model Reference Learning Controlmentioning
confidence: 99%
“…Motorlardaki ani büyük yük değişimi ve atalet değişimlerinde olduğu gibi, sabit parametreli denetleyiciler birçok sistemin kontrolünde yeterli gelmemektedir [2][3][4]. Model referans uyarlamalı denetleyici yaklaşımı, kendini düzenleyen (self-tuning) ve diğer uyarlamalı denetleyici teknikleri ile karşılaştırıldığında daha az hesaplama süresi gerektirmekte ve genel olarak performans, karmaşıklık anlamında daha iyi bir uyum gösterirler [5]. Bulanık kontrol ise, modern kontrol teorisinde bulanık kümeler üzerine kurulmuş, dilsel kurallara ve bulanık muhakemeye dayalı bir kontrol teorisidir.…”
Section: Gi̇ri̇ş (Introduction)unclassified
“…Bulanık model referans öğrenme kontrolü yönteminde, geleneksel adaptif kontrol yapısından farklı olarak "uyarlanabilir" yerine "öğrenme" terimi kullanılmaktadır. Özellikle, doğrudan model referanslı uyarlamalı denetleyici olan bu yöntemde bulanık kural tabanı model raferansa göre yeniden öğrenilmektedir [24,25]. Bu makale kapsamında yapılan çalışmada ise geleneksel uyarlamalı ve doğrudan kontrol yönetmleri yerine öğrenmeye dayalı bir bulanık model referans öğrenme algoritması kullanılarak doğru akım motorunun hız kontrolünü gerçekleştiren uyarlamalı bulanık denetleyici tasarımı yapılmıştır.…”
Section: Gi̇ri̇ş (Introduction)unclassified
“…It should be noted that, similar to the fuzzy controller, as shown in Figure 1, the fuzzy inverse model contains normalizing scaling factors, namely N ye , N yc , and N p , for each space of discourse of the inputs and output. Selection of the normalizing gains, N ye , N yc , and N p , can affect the overall performance of the system [13]. In this study, the input scaling factors of the fuzzy inverse model (N ye and N yc ) are conventionally defined as constants.…”
Section: Fuzzy Inverse Model With Variable Adaptation Gain ( N P )mentioning
confidence: 99%
“…Hence, if the performance is met, i.e. y e (kT ) ≈ 0, then no significant modifications are performed by the learning mechanism to the adaptive fuzzy controller [13]. The learning mechanism, which is the most important part of the controller, consists of 2 parts: a fuzzy inverse model and a knowledge-base modifier.…”
Section: Design Of the Fmrlc With Variable Adaptation Gain (N P )mentioning
confidence: 99%