2010
DOI: 10.1007/s11784-010-0027-7
|View full text |Cite
|
Sign up to set email alerts
|

Moment polytopes, semigroup of representations and Kazarnovskii’s theorem

Abstract: Two representations of a reductive group G are spectrally equivalent if the same irreducible representations appear in both of them. The semigroup of finite-dimensional representations of G with tensor product and up to spectral equivalence is a rather complicated object. We show that the Grothendieck group of this semigroup is more tractable and we give a description of it in terms of moment polytopes of representations. As a corollary, we give a proof of the Kazarnovskii theorem on the number of solutions in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2011
2011
2016
2016

Publication Types

Select...
4
1

Relationship

3
2

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 15 publications
0
1
0
1
Order By: Relevance
“…For algebraic geometry it provides elementary proofs of intersection-theoretic analogues of the geometric Alexandrov-Fenchel inequalities (see [5] and [8]) and far-reaching generalizations of the Fujita approximation theorem (see [6] and [8]). In invariant theory it gives analogues of the Bernstein-Kushnirenko theorem for horospherical varieties [9] and some other manifolds with an action of a reductive group (see [10] and [11]) and makes it possible to compute the Grothendieck group of the semigroup of representations (considered up to spectral equivalence) of a reductive group [10]. In abstract algebra it allows one to introduce a broad class of graded algebras whose Hilbert functions are not necessarily polynomial at large values of the argument but have polynomial asymptotics characterized by constants satisfying an analogue of the Brunn-Minkowski inequalities [8].…”
Section: Introductionmentioning
confidence: 99%
“…For algebraic geometry it provides elementary proofs of intersection-theoretic analogues of the geometric Alexandrov-Fenchel inequalities (see [5] and [8]) and far-reaching generalizations of the Fujita approximation theorem (see [6] and [8]). In invariant theory it gives analogues of the Bernstein-Kushnirenko theorem for horospherical varieties [9] and some other manifolds with an action of a reductive group (see [10] and [11]) and makes it possible to compute the Grothendieck group of the semigroup of representations (considered up to spectral equivalence) of a reductive group [10]. In abstract algebra it allows one to introduce a broad class of graded algebras whose Hilbert functions are not necessarily polynomial at large values of the argument but have polynomial asymptotics characterized by constants satisfying an analogue of the Brunn-Minkowski inequalities [8].…”
Section: Introductionmentioning
confidence: 99%
“…Для алгебраической геометрии она доставляет элементарные доказательства аналогов геометрических нера-венств Александрова-Фенхеля в теории пересечений ( [5], [8]) и далекое обоб-щение теоремы об аппроксимации Фуджиты ( [6], [8]). Для теории инвариантов она доставляет аналоги теоремы Бернштейна-Кушниренко для оросферических многообразий [9] и некоторых других многообразий, снабженных действием ре-дуктивной группы ( [10], [11]), и позволяет вычислить группу Гротендика полу-группы представлений редуктивной группы [10] (рассматриваемых с точностью до спектральной эквивалентности). В абстрактной алгебре она позволяет выде-лить широкий класс градуированных алгебр, функции Гильберта которых не совпадают при больших значениях аргумента с полиномом, но имеют полино-миальную асимптотику, а константы, характеризующие асимптотику, удовле-творяют аналогу геометрического неравенства Брунна-Минковского [8].…”
unclassified