2022
DOI: 10.3389/fchem.2022.887439
|View full text |Cite
|
Sign up to set email alerts
|

Molecular Rubies in Photoredox Catalysis

Abstract: The molecular ruby [Cr(tpe)2]3+ and the tris(bipyridine) chromium(III) complex [Cr(dmcbpy)3]3+ as well as the tris(bipyrazine)ruthenium(II) complex [Ru(bpz)3]2+ were employed in the visible light-induced radical cation [4+2] cycloaddition (tpe = 1,1,1-tris(pyrid-2-yl)ethane, dmcbpy = 4,4′-dimethoxycarbonyl-2,2′-bipyridine, bpz = 2,2′-bipyrazine), while [Cr(ddpd)2]3+ serves as a control system (ddpd = N,N′-dimethyl-N,N′-dipyridin-2-ylpyridine-2,6-diamine). Along with an updated mechanistic proposal for the CrII… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
34
0
9

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
1

Relationship

4
3

Authors

Journals

citations
Cited by 20 publications
(43 citation statements)
references
References 71 publications
0
34
0
9
Order By: Relevance
“…Auswahl von Anwendungen für Komplexe mit angeregten CT-und SF-Zuständen (siehe Haupttext für Details). [69,164,[235][236][237][238][239] Deaktivierung begrenzen, wie für [Ru(bpy) 2 (py) 2 ] 2 + mit flexiblen Pyridinliganden (py) gezeigt wurde. [186,187] Hydrostatischer Druck kann ebenfalls die Energie der SF-Emission beeinflussen.…”
Section: Druckunclassified
See 1 more Smart Citation
“…Auswahl von Anwendungen für Komplexe mit angeregten CT-und SF-Zuständen (siehe Haupttext für Details). [69,164,[235][236][237][238][239] Deaktivierung begrenzen, wie für [Ru(bpy) 2 (py) 2 ] 2 + mit flexiblen Pyridinliganden (py) gezeigt wurde. [186,187] Hydrostatischer Druck kann ebenfalls die Energie der SF-Emission beeinflussen.…”
Section: Druckunclassified
“…Cr III -Komplexe können diesen Nachteil teilweise durch ihre sehr langen Lebensdauern der angeregten Zustände von μs bis ms ausgleichen. [44,69,223] Durch geschicktes Ligandendesign wurden CT-und SF-Emitter erfolgreich für eine Vielzahl von Sensoranwendungen eingesetzt (Abbildung 8): Die Einführung von sauren bzw. basischen Gruppen an den Liganden ermöglichte die Messung des pH-Werts, [63,67,[247][248][249][250] Quantifizierung von Sauerstoff wurde durch Ausnutzung der Löschung der Phosphoreszenz durch 3 O 2 unter Bildung von 1 O 2 erreicht, [179,251] und eine Vielzahl von Mechanismen wie TADF, thermische Äquilibrierung energetisch ähnlicher SF-Zustände oder thermisch aktivierter strahlungsloser Zerfall kann Temperaturmessung ermöglichen (siehe Abschnitte 3.2 und 4.1).…”
Section: Anwendungenunclassified
“…39 Therefore, combining large g lum and high quantum yields on Cr(III) complexes is achievable and allow high CPL brightness (B CPL = e l  f l  g lum /2) which is key for the different applications employing chiral photoactive materials, where having good responses under ambient conditions is also advisable. 31 Based on the inertness, 40 inexpensive character of chromium, 41,42 and the interesting photophysical properties of Cr(III) complexes, 39,43,44 these systems have been recently used for molecular upconversion, [45][46][47][48][49] molecular thermometry, 50 pressure sensors, 51 photocalysis, [52][53][54][55][56] NIR-II luminescence, 57,58 and, remarkably, as CPL emitters. 48,59,60 Aiming at transferring the latter application to the nanoscale, herein we present amorphous silica nanoparticles which encapsulate photoactive chiral Cr(III) chromophores.…”
Section: Introductionmentioning
confidence: 99%
“…1,11 With respect to photooxidizing properties, many strongly photooxidizing complexes operate as inner-sphere oxidants in hydrogen atom transfer and M-X bond homolysis reactions, such as high valent oxido and halido complexes of manganese(IV), tungsten(VI), cerium(IV), uranium(VI) and copper(II), [12][13][14][15][16][17][18][19] while strong genuine single-electron outer-sphere photooxidants, which fully retain their coordination sphere, are rare. Recent advances in the field of earth-abundant photocatalysts operating as strong single-electron oxidants include zirconium(IV), 20,21 cobalt(III), 22 iron(III) [23][24][25][26][27] and chromium(III) complexes [28][29][30][31] in their respective excited states, which are of ligand-to-metal charge transfer character (LMCT) 32 for the former and of spin-flip character for chromium(III) complexes. 10,33 Photosensitizers possessing excited states with potentials more positive than +0.80 V vs. SCE (+0.42 V vs. ferrocene) 34 are considered as photosensitizers with extreme redox potentials.…”
mentioning
confidence: 99%
“…35,36 The hexacarbene iron(III) complex [Fe(phtmeimb)2] + and various polypyridine chromium(III) complexes realize potentials of Ered* = 1.25 -1.84 V vs. SCE (0.87-1.46 V vs. ferrocene) (phtmeimb = [phenyl(tris(3-methylimidazolin-2ylidene))borate] − ) with blue-green light excitation. [23][24][25][26][27][28][29][30][31] The formally strongest reported photooxidant based on a first row transition metal is [Co(dgpz)2] 3+ with Ered* = 2.75 V vs. SCE (2.37 V vs. ferrocene), yet its strong oxidizing power towards challenging substrates has not yet been exploited (dgpz = 2,6diguanidylpyrazine). 22 Strong organic photooxidants encompass substituted acridinium salts, 37 2,3dichloro-5,6-dicyano-1,4-benzoquinone 38,39 and the electrochemically generated trisaminocyclopropenium radical dication with Ered* = 2.06-3.33 V vs. SCE (1.68-2.95 V vs. ferrocene).…”
mentioning
confidence: 99%