It is well established that small sugars exert different types of stabilization of biomembranes both in vivo and in vitro. However, the essential question of whether sugars are bound to or expelled from membrane surfaces, i.e., the sign and size of the free energy of the interaction, remains unresolved, and this prevents a molecular understanding of the stabilizing mechanism. We have used smallangle neutron scattering and thermodynamic measurements to show that sugars may be either bound or expelled depending on the concentration of sugar. At low concentration, small sugars bind quite strongly to a lipid bilayer, and the accumulation of sugar at the interface makes the membrane thinner and laterally expanded. Above ∼0.2 M the sugars gradually become expelled from the membrane surface, and this repulsive mode of interaction counteracts membrane thinning. The dual nature of sugar-membrane interactions offers a reconciliation of conflicting views in earlier reports on sugar-induced modulations of membrane properties.membrane interface | membrane structure | preferential binding | preferential exclusion | interaction free energy S mall sugars such as the disaccharides sucrose and trehalose are among the so-called osmolytes (1) or compensatory solutes (2), which are accumulated in response to environmental stress in virtually all taxa. Their function is to act as inert regulators of the osmotic pressure, but they also optimize the physical properties of the cytosol (3) and stabilize biomolecular conformations against cold, drought, and heat (4-7). The same small carbohydrates have also proven useful in vitro as protectants or excipients for biopreservation (8). Many reports have shown that membranous structures are particularly stabilized by small sugars (4, 6, 9), but the definition of stabilization covers a wide range of biological and physical parameters. Thus, studies on intact cells have documented improved survival following exposure to heat, cold, drought, or chemical stressors (6,10,11). Other works have analyzed stabilization on the basis of phenomenological properties of model membranes, for example, the leakage or intermixing of probes in liposomes (12, 13). Finally, stability has been discussed with respect to rigorous physical parameters such as the structure or mechanical properties of lipid bilayers (14, 15). The current work addresses membrane dimensions and the thermodynamics of interaction with the purpose of elucidating fundamental aspects of membrane-sugar interrelationships. The different observations of sugar stabilization have sparked a large number of studies on sugars and model membranes (usually phospholipid bilayers) over the past 30 y. Investigations of fully hydrated membranes show an interesting tendency to fall into two groups with mutually conflicting conclusions. Thus, many investigations have suggested direct (favorable) interaction of sugars and the phospholipid interface (16-23), and it is obvious that such interactions could be the origin of sugar effects, for example, through int...