2018
DOI: 10.1103/physrevaccelbeams.21.052801
|View full text |Cite
|
Sign up to set email alerts
|

Modified coaxial wire method for measurement of transfer impedance of beam position monitors

Abstract: The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 6 publications
0
2
0
Order By: Relevance
“…For this reason, the radiation field is formed due to the diffraction of the electron beam self-field on the periodic electronic density of the crystal. Consequently, the determination of the characteristics of PXR-SPG, the discussion of its possible observation and applications for the beam diagnostics [11] t e x i t s h a 1 _ b a s e 6 4 = " 1 Q e f N o x A h 3 R + 2 E n T O w i 3 E a r M b H 4 = " > A A A C j 3 i c b V F d S y M x F E 3 H 3 V W 7 X 9 Z 9 9 C V Y l t 2 n M r M I 7 p N U f X H f K l g r d A b J Z O 7 U M P k Y k o x S Q n 6 E r / r L / D e m H 7 B t 9 U L g c M 6 5 3 H N z 8 5 o z Y + P 4 p R V t f f j 4 a X t n t / 3 5 y 9 d v 3 / c 6 + 9 d G N Z r C k C q u 9 E 1 O D H A m Y W i Z 5 X B T a y A i 5 z D K q / O Z P r o H b Z i S V 3 Z a Q y b I R L K S U W I D N U r v g e L q 1 + 1 e N + 7 F 8 8 J v Q b I E X b S s w W 2 n p d N C 0 U a A t J Q T Y 8 Z J X N v M E W 0 Z 5 e D b a W O g J r Q i E x g H K I k A k 7 l 5 X o 9 / B q b A p d L h S Y v n 7 G q H I 8 K Y q c i D U x B 7 Z z a 1 G f m e N m 5 s + T d z T N a N B U k X g 8 q G Y 6 v w b H l c M A 3 U 8 m k A h G o W s m J 6 R z S h N n z R 2 p S m n m i A y r f b q Y Q H q o Q g s n C p q k / 9 O M l c m i t e z C I q 7 t J 5 j t J 1 E + / 9 p p 0 s 7 C u W d Y d m f q F q 4 d i m C P B f B O / D l Z L N m 7 w F 1 3 9 Figure 1: (Color online) The comparison of the grazing geometry of PXR-EAD, when an electron beam moves in a crystal with the grazing geometry of PXR-SPG, when the main beam part propagates in vacuum and only the halo of the beam travels inside a crystal. In both cases an electron beam propagates with the velocity v 0 along the 110 .…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…For this reason, the radiation field is formed due to the diffraction of the electron beam self-field on the periodic electronic density of the crystal. Consequently, the determination of the characteristics of PXR-SPG, the discussion of its possible observation and applications for the beam diagnostics [11] t e x i t s h a 1 _ b a s e 6 4 = " 1 Q e f N o x A h 3 R + 2 E n T O w i 3 E a r M b H 4 = " > A A A C j 3 i c b V F d S y M x F E 3 H 3 V W 7 X 9 Z 9 9 C V Y l t 2 n M r M I 7 p N U f X H f K l g r d A b J Z O 7 U M P k Y k o x S Q n 6 E r / r L / D e m H 7 B t 9 U L g c M 6 5 3 H N z 8 5 o z Y + P 4 p R V t f f j 4 a X t n t / 3 5 y 9 d v 3 / c 6 + 9 d G N Z r C k C q u 9 E 1 O D H A m Y W i Z 5 X B T a y A i 5 z D K q / O Z P r o H b Z i S V 3 Z a Q y b I R L K S U W I D N U r v g e L q 1 + 1 e N + 7 F 8 8 J v Q b I E X b S s w W 2 n p d N C 0 U a A t J Q T Y 8 Z J X N v M E W 0 Z 5 e D b a W O g J r Q i E x g H K I k A k 7 l 5 X o 9 / B q b A p d L h S Y v n 7 G q H I 8 K Y q c i D U x B 7 Z z a 1 G f m e N m 5 s + T d z T N a N B U k X g 8 q G Y 6 v w b H l c M A 3 U 8 m k A h G o W s m J 6 R z S h N n z R 2 p S m n m i A y r f b q Y Q H q o Q g s n C p q k / 9 O M l c m i t e z C I q 7 t J 5 j t J 1 E + / 9 p p 0 s 7 C u W d Y d m f q F q 4 d i m C P B f B O / D l Z L N m 7 w F 1 3 9 Figure 1: (Color online) The comparison of the grazing geometry of PXR-EAD, when an electron beam moves in a crystal with the grazing geometry of PXR-SPG, when the main beam part propagates in vacuum and only the halo of the beam travels inside a crystal. In both cases an electron beam propagates with the velocity v 0 along the 110 .…”
Section: Introductionmentioning
confidence: 99%
“…For this reason, the radiation field is formed due to the diffraction of the electron beam self-field on the periodic electronic density of the crystal. Consequently, the determination of the characteristics of PXR-SPG, the discussion of its possible observation and applications for the beam diagnostics [11]…”
Section: Introductionmentioning
confidence: 99%