2012
DOI: 10.2495/su120081
|View full text |Cite
|
Sign up to set email alerts
|

Modelling blast loads in rail vehicles

Abstract: The open, accessible and crowded nature of urban mass transit networks has attracted previous attacks in London, Madrid and other cities, and it is very difficult to prevent an attacker entering while retaining normal operation of the system. The research presented here contributes to the modelling capability needed to apply a 'passive safety' approach in vehicle design, whereby the impact and consequences of a blast in a mass transit vehicle could be reduced.The multi-material Arbitrary Lagrangian Eulerian (m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2016
2016

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 16 publications
0
1
0
Order By: Relevance
“…The experimental testing presented here was undertaken with a number of aims in mind: first, to generate data for validation of numerical modelling [1]; secondly, to develop an experimental method using quarter symmetry and scaling to reduce the test and charge size needed, increasing the number of configurations which could be tested in a given time and cost; thirdly, to understand the effect of changes in enclosure geometry on measured pressure and impulse; and lastly to generate data showing the consistency of output from high explosive detonations in confined spaces that can pro-vide the basis for future validations of a variety of prediction tools.…”
Section: Introductionmentioning
confidence: 99%
“…The experimental testing presented here was undertaken with a number of aims in mind: first, to generate data for validation of numerical modelling [1]; secondly, to develop an experimental method using quarter symmetry and scaling to reduce the test and charge size needed, increasing the number of configurations which could be tested in a given time and cost; thirdly, to understand the effect of changes in enclosure geometry on measured pressure and impulse; and lastly to generate data showing the consistency of output from high explosive detonations in confined spaces that can pro-vide the basis for future validations of a variety of prediction tools.…”
Section: Introductionmentioning
confidence: 99%