The coal to ethylene glycol (CTEG) process has drawn much attention due to the serious conflict between supply and demand of ethylene glycol in China. However, it is inevitably accompanied by the problem of high CO2 emissions. Carbon capture is one of the most promising potential effective ways to address this issue. However, the CTEG process, integrated with carbon capture technology, will lead to energy and economic penalties. Thus, a comprehensive evaluation of CTEG process with different CO2 capture technologies is urgently needed. This study analyzed the technoeconomic performance of four CO2 capture alternatives for the CTEG process: Rectisol, mono-ethanol amine (MEA), chilled ammonia process (CAP) and dimethyl carbonate (DMC) technologies. Results show the energy consumption of CO2 capture of the Rectisol process is the lowest, 1.88 GJ/tCO2, followed by the DMC process, 2.10 GJ/tCO2, the CAP process, 3.64 GJ/tCO2, and the MEA process, 5.20 GJ/tCO2. The CO2 capture cost of the Rectisol process is lowest, CNY 169.5/tCO2, followed by the DMC process, CNY 193.2/tCO2, the CAP process CNY 232.6/tCO2, and the MEA process CNY 250.5/tCO2. As the Rectisol technology has the best comprehensive performance, it is the best option for CTEG industry in comparison with the MEA, CAP, and DMC technologies.