In response to a surge of deaths from synthetic opioid overdoses, there have been increased efforts to distribute naloxone products in community settings. Prior research has assessed the effectiveness of naloxone in the hospital setting; however, it is challenging to assess naloxone dosing regimens in the community/first‐responder setting, including reversal of respiratory depression effects of fentanyl and its derivatives (fentanyls). Here, we describe the development and validation of a mechanistic model that combines opioid mu receptor binding kinetics, opioid agonist and antagonist pharmacokinetics, and human respiratory and circulatory physiology, to evaluate naloxone dosing to reverse respiratory depression. Validation supports our model, which can quantitatively predict displacement of opioids by naloxone from opioid mu receptors in vitro, hypoxia‐induced cardiac arrest in vivo, and opioid‐induced respiratory depression in humans from different fentanyls. After validation, overdose simulations were performed with fentanyl and carfentanil followed by administration of different intramuscular naloxone products. Carfentanil induced more cardiac arrest events and was more difficult to reverse than fentanyl. Opioid receptor binding data indicated that carfentanil has substantially slower dissociation kinetics from the opioid receptor compared with nine other fentanyls tested, which likely contributes to the difficulty in reversing carfentanil. Administration of the same dose of naloxone intramuscularly from two different naloxone products with different formulations resulted in differences in the number of virtual patients experiencing cardiac arrest. This work provides a robust framework to evaluate dosing regimens of opioid receptor antagonists to reverse opioid‐induced respiratory depression, including those caused by newly emerging synthetic opioids.