Manufacturing systems are becoming increasingly flexible, necessitating the adoption of new technologies that allow adaptations to a turbulent and complex modern market. Consequently, modern concepts of production systems require horizontal and vertical integration, extending across value networks and within a factory or production shop. The integration of these environments enables the acquisition of a substantial amount of data containing information pertaining to production, processes, and equipment located on the shop floor. When these data and information are processed and analyzed, they have the potential to reveal valuable insights and knowledge about the manufacturing systems, offering interpretive outcomes for strategic decision making. One of the opportunities presented in this context includes the implementation of predictive maintenance (PdM). However, industrial adoption of PdM is still relatively low. In this paper, the aim is to propose a methodology for selecting the main attributes (variables) to be considered in the instrumentation setup of rotating machines driven by electric motors to decrease the associated costs and the time spent defining them. For this, the most well-known data science and machine learning algorithms are investigated to choose the one most adequate for this task. For the experiments, different testing scenarios were proposed to detect the different possible types of anomalies, such as uncoupled, overloaded, unbalanced, misaligned, and normal. The results obtained show how these algorithms can be effective in classifying the different types of anomalies and that the two models that presented the best accuracy values were k-nearest neighbor and multi-layer perceptron.