2016
DOI: 10.1371/journal.pone.0151839
|View full text |Cite
|
Sign up to set email alerts
|

Model Construction and Analysis of Respiration in Halobacterium salinarum

Abstract: The archaeon Halobacterium salinarum can produce energy using three different processes, namely photosynthesis, oxidative phosphorylation and fermentation of arginine, and is thus a model organism in bioenergetics. Compared to its bacteriorhodopsin-driven photosynthesis, less attention has been devoted to modeling its respiratory pathway. We created a system of ordinary differential equations that models its oxidative phosphorylation. The model consists of the electron transport chain, the ATP synthase, the po… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
3

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 30 publications
0
2
0
3
Order By: Relevance
“…Unique amongst prokaryotes in general is the extreme low protein coding gene density (76.5%), a value that normally lies between 85%–90% in prokaryotes [ 14 ]. H. walsbyi is capable of phototrophic growth which is facilitated by a conserved haloarchaeal type bacteriorhodopsin (BopI) that functions as a light driven proton pump [ 15 ], generating a transmembrane proton gradient that can be used to drive ATP synthesis via the membrane ATP synthase and to drive other transport processes [ 16 ]. A second bacteriorhodopsin coding homolog, bopII, is a phylogenetic deep-rooting gene, meaning that it is evolutionary closely related to the common ancestor of currently known bop genes although its function is yet to be determined.…”
Section: Introductionmentioning
confidence: 99%
“…Unique amongst prokaryotes in general is the extreme low protein coding gene density (76.5%), a value that normally lies between 85%–90% in prokaryotes [ 14 ]. H. walsbyi is capable of phototrophic growth which is facilitated by a conserved haloarchaeal type bacteriorhodopsin (BopI) that functions as a light driven proton pump [ 15 ], generating a transmembrane proton gradient that can be used to drive ATP synthesis via the membrane ATP synthase and to drive other transport processes [ 16 ]. A second bacteriorhodopsin coding homolog, bopII, is a phylogenetic deep-rooting gene, meaning that it is evolutionary closely related to the common ancestor of currently known bop genes although its function is yet to be determined.…”
Section: Introductionmentioning
confidence: 99%
“…For example, Shi et al used Luria Bertani broth at 1% and 4% NaCl concentrations to test the bioelectric output of Anditalea andensis an alkaliphilic halotolerant bacterium and achieved a total current capacity of 0.5 microamp/cm 2 over 120 hours [ 24 ]. As per mathematical modelling of Halobacterium's respiratory pathway using differential equations, researchers predicted that the organism would be able to generate 280 mV [ 25 ]. Furthermore, halophile microbial electric systems can be used to remediate and/or monitor environments for pollutants.…”
Section: Introductionmentioning
confidence: 99%
“…Este organismo é um halófilo obrigatório, suas células apresentam formato de bastonete, flagelos e uma coloração que varia entre as tonalidades rosa e laranja devido a presença de pigmentos carotenóides como as bacterioruberinas e a proteínas de membranas como a bacteriorodopsina (Figura 1.3) (Allers e Mevarech, 2005;Facciotti et al, 2010;Oren, 2012;Jehlička e Oren, 2013). É um organismo anaeróbico facultativo, e nas condições ricas em oxigênio, a síntese de ATP ocorre predominantemente via ciclo do ácido tricarboxílico (TCA) e a fosforilação oxidativa (Ng et al, 2000;Talaue et al, 2016). Em contraste, sob condições anaeróbicas, a síntese de ATP pode ocorrer mediante, pelo menos, duas vias: fermentação de arginina (Ruepp e Soppa, 1996;DasSarma et al, 2006;Oren, 2012) e fototrofia (Oesterhelt e Stoeckenius, 1973;Oesterhelt e Krippahl, 1973).…”
Section: Halobacterium Salinarum Nrc-1unclassified
“…No entanto, só a fotofosforilação e respiração podem promovem a acidificação do meio extracelular (Oesterhelt e Stoeckenius, 1973;Oesterhelt e Krippahl, 1973), que também é favorecido pelo gradiente eletroquímico de prótons proposto por Mitchell na sua teoria quimiosmótica (Mitchell, 1961 dos durante a degradação dos nutrientes do meio, para produzir ATP (Ng et al, 2000;Gonzalez et al, 2009;Talaue et al, 2016 (Baliga et al, 2002;Gonzalez et al, 2009). Neste sentido, sugerimos que a presença vários mecanismos de obtenção de energia equilibre as demandas energéticas das células e mantenha, entre as linhagens, indistinguíveis as possíveis mudanças do pH que poderiam ser originadas pela fototrofia.…”
Section: Ausência Do Gene Vng_rs05855 Influencia As Transições Metabóunclassified
See 1 more Smart Citation