1985
DOI: 10.1002/ange.19850970207
|View full text |Cite
|
Sign up to set email alerts
|

[Mn(S2C6H3Me)2]n−: Schwefelsubstituierte planar (n=1) und verzerrt‐tetraedrisch koordinierte (n=2) einkernige Mangan‐Komplexe

Abstract: Der ungewöhnliche planare Mangan (III)‐Schwefel‐Komplex [Mn(S2C6H3Me)2]‐ 1 bildet sich bei der Umsetzung von MnCl2·4H2O mit Toluol‐3,4‐dithiolat in Methanol in Gegenwart von Luftsauerstoff. Außerdem entsteht der quadratisch‐pyramidale Komplex mit zusätzlicher apicaler meOH‐Gruppe. Unter anaeroben Bedingungen erhält man den Mangan(II)‐Schwefel‐Komplex [Mn(S2C6H3Me)2]2−, der sich von 1 durch stark verzerrte tetraedrische Koordination unterscheidet.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
2
0
1

Year Published

1985
1985
2002
2002

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 7 publications
1
2
0
1
Order By: Relevance
“…Similar arguments hold for bis(benzenedithiolate) complexes that can adopt a square‐pyramidal or tetrahedral coordination geometry, depending on the oxidation state of the metal atom. This has already been demonstrated with Mn III and Mn II complexes 11…”
Section: Introductionsupporting
confidence: 60%
See 2 more Smart Citations
“…Similar arguments hold for bis(benzenedithiolate) complexes that can adopt a square‐pyramidal or tetrahedral coordination geometry, depending on the oxidation state of the metal atom. This has already been demonstrated with Mn III and Mn II complexes 11…”
Section: Introductionsupporting
confidence: 60%
“…This is illustrated in Figure 2 for complex 14. It can be seen that the two [Ni(S 2 C 6 H 3 R) 2 ] (2), S1ÀC1 1.768(8), S2ÀC2 1.743(8), S3ÀC12 1.767 (7), S4ÀC13 1.766(8), S5ÀC17 1.742 (7), S6ÀC18 1.753(8), S7ÀC28 1.765 (7), S8ÀC29 1.749 (8); S1-Ni1-S2 91.31 (8), S1-Ni1-S5 90.45 (8), S1-Ni1-S6 172.34 (11), S2-Ni1-S5 174.10(9), S2-Ni1-S6 88.88 (8), S5-Ni1-S6 90.13 (8), S3-Ni2-S4 89.86 (8), S3-Ni2-S7 89.49 (8), S3-Ni2-S8 171.44(10), S4-Ni2-S7 174.84(9), S4-Ni2-S8 90.74 (8), S7-Ni2-S8 90.67 (8), C1-S1-Ni1 105.2(3), C2-S2-Ni1 106.3(3), C12-S3-Ni2 106.8(3), C13-S4-Ni2 105.5(3), C17-S5-Ni1 105.3(3), C18-S6-Ni1 108.4(3), C28-S7-Ni2 106.9(2), C29-S8-Ni2 105.3(3); 13: NiÀS1 2.140(3), NiÀS2 2.155(3), NiÀS3 2.151(3), NiÀS4 2.162(3), S1ÀC1 1.730(9), S2ÀC2 1.742(9), S3ÀC9 1.736(10), S4ÀC10 1.756(10); S1-Ni-S3 88.52(10), S1-Ni-S2 91.51(10), S1-Ni-S4 175.24 (12), S2-Ni-S3 174.84 (12), S2-Ni-S4 89.00(10), S3-Ni-S4 91.39(10), C1-S1-Ni 105.1(3), C2-S2-Ni 105.5(3), C9-S3-Ni 105.3(4), C10-S4-Ni 105.4(3).…”
Section: Resultsunclassified
See 1 more Smart Citation
“…In solution, the adam antane type spe cies is fluxional, but in the solid state the orienta tion of the phenyl groups is determined by the de tailed stereochemistry of the anion and packing forces o f the crystal lattice. For 5 the six phenyl groups attached to the S atoms of the four con densed C03S3 heterocycles exhibit the 2 -2 - [18]. The 'H N M R spec trum of 5 in acetonitrile solution presented in Fig.…”
Section: Structures [Et4n ]4[m N(sph)3br][m N(sph)3cl]mentioning
confidence: 98%