To characterize the dynamic modulus (E*) of the asphalt mixtures more accurately, a comparative study was shown in this paper, combining six ML models (BP, SVM, DT, RF, KNN, and LR) with the novelly developed MBAS (modified BAS, beetle antennae search) algorithm to check the potential to replace the empirical model. The hyperparameter tuning process of the six ML models by the proposed MBAS algorithm showed satisfactory results. The calculation and evaluation process demonstrated fast convergence and significantly lower values of RMSE for the five ML models (BP, SVM, DT, RF, and KNN) to determine the E* of the asphalt mixtures. Comparing the performances of the six ML models in the prediction of the E* by the statistical coefficients and Monte Carlo simulation, the RF model showed the highest accuracy, efficiency, and robustness.