Mammalian epithelial tumors lose polarity as they progress toward malignancy, but whether polarity loss might causally contribute to cancer has remained unclear. In Drosophila, mutations in the "neoplastic tumor suppressor genes" (nTSGs) scribble, discs-large, and lethal giant larvae disrupt polarity of epithelia and neuroblasts, and simultaneously induce extensive overproliferation of these cells, which exhibit malignant-like characteristics. Herein I review what is known about the role of the fly nTSGs in controlling cell polarity and cell proliferation. Incorporating data from mammalian studies, I consider how polarity and proliferation can be coupled, and how disruption of polarity could promote cancer.