In this paper, we study the Koszul property of the homogeneous coordinate ring of a generic collection of lines in
$\mathbb {P}^n$
and the homogeneous coordinate ring of a collection of lines in general linear position in
$\mathbb {P}^n.$
We show that if
$\mathcal {M}$
is a collection of m lines in general linear position in
$\mathbb {P}^n$
with
$2m \leq n+1$
and R is the coordinate ring of
$\mathcal {M},$
then R is Koszul. Furthermore, if
$\mathcal {M}$
is a generic collection of m lines in
$\mathbb {P}^n$
and R is the coordinate ring of
$\mathcal {M}$
with m even and
$m +1\leq n$
or m is odd and
$m +2\leq n,$
then R is Koszul. Lastly, we show that if
$\mathcal {M}$
is a generic collection of m lines such that
$$ \begin{align*} m> \frac{1}{72}\left(3(n^2+10n+13)+\sqrt{3(n-1)^3(3n+5)}\right),\end{align*} $$
then R is not Koszul. We give a complete characterization of the Koszul property of the coordinate ring of a generic collection of lines for
$n \leq 6$
or
$m \leq 6$
. We also determine the Castelnuovo–Mumford regularity of the coordinate ring for a generic collection of lines and the projective dimension of the coordinate ring of collection of lines in general linear position.