2012
DOI: 10.5121/ijcsea.2012.2604
|View full text |Cite
|
Sign up to set email alerts
|

Min-Based Symmetry Possibilistic Network Model for Representation of Uncertain Datamodels

Abstract: Uncertainty is inherent in various applications, such as Sensor Networks, Large Datasets, Medicine, Mobile Networks, Biomedical and Clinical Data, Social and Economical Research. Uncertain data poses significant challenges for data analytic tasks. Analysis of large collections of uncertain data is a primary task in these applications, because data is vague, ambiguous, incomplete, and inefficient. In this paper, we investigate the fundamental problem of analysis and representation of uncertain data objects for … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?