2005
DOI: 10.1016/j.jallcom.2004.08.081
|View full text |Cite
|
Sign up to set email alerts
|

Microstructural evolution during mechanical alloying of Mg and Ni

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

7
21
0
3

Year Published

2006
2006
2015
2015

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 30 publications
(31 citation statements)
references
References 39 publications
7
21
0
3
Order By: Relevance
“…The XRD diagram of the ball-milled alloy exhibits significant peak-broadening, which is related to the cumulative defects formed upon grinding, resulting in the reduction of crystallite size. Studies by Transmission Electron Microscopy (TEM) on similar ball-milled Mg 2 Ni alloys have shown that the crystallite size is less than 15-20 nm [16,17].…”
Section: Characterizationsmentioning
confidence: 99%
“…The XRD diagram of the ball-milled alloy exhibits significant peak-broadening, which is related to the cumulative defects formed upon grinding, resulting in the reduction of crystallite size. Studies by Transmission Electron Microscopy (TEM) on similar ball-milled Mg 2 Ni alloys have shown that the crystallite size is less than 15-20 nm [16,17].…”
Section: Characterizationsmentioning
confidence: 99%
“…In addition, no activation process is needed, which the conventional AB 5 and AB 2 type hydrogen storage alloys need [2]. The great enhancement of the properties of these negative electrode materials could be explained by the disordered character of the amorphous structure, which provides numerous desirable sites for electrochemical hydrogen storage [3]. Amorphous MgNi alloy can be obtained by MA method as in our previous work [4].…”
Section: Introductionmentioning
confidence: 99%
“…El proceso seleccionado para fabricar este tipo de materiales ha sido el aleado mecánico, el cual proporciona las ventajas de promover el refinamiento microestructural hasta ordenes nanométricos, facilitar la incorporar elementos aleantes en estado sólido y, en algunos casos, producir la amorfización de los elementos originales a través de una combinación de cambios microestructurales como el refinamiento y la sobresaturación. Esta propuesta ha sido idea después de mucho trabajo realizado en el proceso de aleado mecánico con distintos materiales y distintas condiciones de molienda [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15]. Los resultados obtenidos han permitido a los investigadores evaluar las condiciones del proceso para trabajar con elementos puros (Cu y Ti) [1-3], formación de aleaciones (Cu-Li, Cu-Cr, Cu-Mo) [1, [4][5][6][7][8] y obtención de compuestos intermetálicos (Mg 2 Ni, MgNi 2, Mg 2 Cu, Mg 2 Co) [9][10][11][12][13][14][15][16][17].…”
Section: Introductionunclassified