Handbook of Magnetism and Advanced Magnetic Materials 2007
DOI: 10.1002/9780470022184.hmm214
|View full text |Cite
|
Sign up to set email alerts
|

Micromagnetism–Microstructure Relations and the Hysteresis Loop

Abstract: Magnetic materials are widely used in many (modern) application fields ranging from electrical engineering, car industry and energy technique to sensor systems, high‐density recording and applications in medicine and biology. For a technological progress in these fields and for an application‐oriented magnet design the characteristic magnetic properties of the hysteresis loop are of great importance. Their steady improvement brings about in particular a continuous miniaturization of magnetic devices (hard magn… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2009
2009
2024
2024

Publication Types

Select...
3
2
2

Relationship

1
6

Authors

Journals

citations
Cited by 24 publications
(4 citation statements)
references
References 80 publications
0
2
0
2
Order By: Relevance
“…This behavior can be explained by the imperfect microstructure of the sintered material. The grains of the material exhibit regions at the grain boundary where the hard magnetic properties are lowered and the demagnetization is facilitated in the presence of an applied opposing field [32,33]. Due to this fact, grains with larger regions of defects, i.e., where the demagnetization of the grain begins within the activation volume, are already demagnetized at weaker applied fields than in grains with smaller regions of magnetic defects.…”
Section: Discussionmentioning
confidence: 99%
“…This behavior can be explained by the imperfect microstructure of the sintered material. The grains of the material exhibit regions at the grain boundary where the hard magnetic properties are lowered and the demagnetization is facilitated in the presence of an applied opposing field [32,33]. Due to this fact, grains with larger regions of defects, i.e., where the demagnetization of the grain begins within the activation volume, are already demagnetized at weaker applied fields than in grains with smaller regions of magnetic defects.…”
Section: Discussionmentioning
confidence: 99%
“…Интересно отметить, что данная ситуация не характерна для модели дефекта с негладким профилем, а вместе с тем -и для пластинчатого магнитного включения, так что исследования, основанные на допущениях этих простейших моделей, обречены на неполноту. Кроме того, для последних двух моделей дефектов можно утверждать, что для крупных дефектов, дающих наибольший вклад в технические характеристики материала, однородное распределение намагниченности в их области крайне маловероятно, в то время как 0 • -ДГ2, являясь метастабильным состоянием, может дать основной вклад в гистерезисные явления, которые являются доминирующими при перемагничивании изучаемых образцов [1].…”
Section: заключениеunclassified
“…Реальные магнетики отличаются от их идеализированных моделей прежде всего тем, что в них присутствуют различного рода дефекты, нарушающие их трансляционную инвариантность [1]. Это сказывается на их свойствах и, в частности, влияет на некоторые важные в техническом плане характеристики материала.…”
Section: Introductionunclassified
“…In particular, for a coercive field of a zero thickness DW pinned by a random array of inhomogeneities the scaling laws were found in both weak and strong pinning regimes [8][9][10]. Although stationary DW pinning and depinning mechanisms seem to be well understood [11,12], rigorous theoretical results on DW pinning by nanosized defects in ultrathin films are scarce. Only few theoretical investigations relate to the case where defects are nothing more than the magnetic atoms themselves; this situation is referred to as the Peierls potential case [13].…”
Section: Introductionmentioning
confidence: 99%