2023
DOI: 10.3390/cryst14010012
|View full text |Cite
|
Sign up to set email alerts
|

Microgravity Crystal Formation

Keegan Jackson,
Frances Brewer,
Ashley Wilkinson
et al.

Abstract: The benefits of crystallization in a microgravity environment have been documented. Herein, we update the community on the results of a retrospective meta-analysis and data curation of 507 unique crystallization experiments that have been disseminated in the literature over a broad diversity of substrates. The analysis variables in the dataset that were evaluated include individual success metrics such as size, structural improvement, improved uniformity, increased resolution limit, and improved mosaicity. The… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 40 publications
0
1
0
Order By: Relevance
“…9 Reports in the literature over the last three decades indicate that the microgravity environment can be used to create novel protein crystalline polymorphs with physicochemical properties significantly different from protein crystals grown on Earth at 1g (one g is the force per unit mass due to gravity at the Earth's surface; this standard gravity is defined as 9.8 meters per second squared), thus enabling the production of low-viscosity, highly concentrated colloidal protein crystal suspensions. [10][11][12] These physiochemical characteristics are essential for developing therapeutic mAb and ADC formulations that are suitable for simple SC injection. These high-concentration crystalline mAb formulations could then ideally be administered at a regular doctor's office or even by patients themselves as home therapy, thereby avoiding the traditional, hospital-based, day-long, IV infusion treatment protocols.…”
Section: Introductionmentioning
confidence: 99%
“…9 Reports in the literature over the last three decades indicate that the microgravity environment can be used to create novel protein crystalline polymorphs with physicochemical properties significantly different from protein crystals grown on Earth at 1g (one g is the force per unit mass due to gravity at the Earth's surface; this standard gravity is defined as 9.8 meters per second squared), thus enabling the production of low-viscosity, highly concentrated colloidal protein crystal suspensions. [10][11][12] These physiochemical characteristics are essential for developing therapeutic mAb and ADC formulations that are suitable for simple SC injection. These high-concentration crystalline mAb formulations could then ideally be administered at a regular doctor's office or even by patients themselves as home therapy, thereby avoiding the traditional, hospital-based, day-long, IV infusion treatment protocols.…”
Section: Introductionmentioning
confidence: 99%