2020
DOI: 10.20517/cdr.2019.77
|View full text |Cite
|
Sign up to set email alerts
|

Microfluidic chip enables single-cell measurement for multidrug resistance in triple-negative breast cancer cells

Abstract: Aims: Triple-negative breast cancer patients are commonly treated with combination chemotherapy. Nonetheless, outcomes remain substandard with relapses being of a frequent occurrence. Among the several mechanisms that result in treatment failure, multidrug resistance, which is mediated by ATP-binding cassette proteins, is the most common. Regardless of the substantial studies conducted on the heterogeneity of cancer types, only a few assays can distinguish the variability in multidrug resistance activity betwe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 29 publications
0
1
0
Order By: Relevance
“…A microfluidic device, developed for the rapid isolation of exosomes produced by multiple drug-resistant cancer cells in response to various therapies, was used to identify the mechanisms of adaptive resistance [274]. Measurements of multidrug resistance in single breast cancer cells, captured in a microfluidic chip, allowed the automated isolation and purification of chemotherapy-resistant drugs [275,276], and crosstalk pathways between breast cancer cells and adipose-derived stem cells that lead to drug resistance were identified via passive diffusion in a two-layer microfluidic device [277]. Thus far, several microfluidic platforms have been successfully applied for the maintenance and expansion of patient-derived tumor cells, spanning diverse cancer types and sources, solid tumors or liquid biopsies (CTCs), for personalized drug screening applications [232].…”
Section: Cancer Resistance To Treatmentmentioning
confidence: 99%
“…A microfluidic device, developed for the rapid isolation of exosomes produced by multiple drug-resistant cancer cells in response to various therapies, was used to identify the mechanisms of adaptive resistance [274]. Measurements of multidrug resistance in single breast cancer cells, captured in a microfluidic chip, allowed the automated isolation and purification of chemotherapy-resistant drugs [275,276], and crosstalk pathways between breast cancer cells and adipose-derived stem cells that lead to drug resistance were identified via passive diffusion in a two-layer microfluidic device [277]. Thus far, several microfluidic platforms have been successfully applied for the maintenance and expansion of patient-derived tumor cells, spanning diverse cancer types and sources, solid tumors or liquid biopsies (CTCs), for personalized drug screening applications [232].…”
Section: Cancer Resistance To Treatmentmentioning
confidence: 99%