2019
DOI: 10.3390/molecules25010174
|View full text |Cite
|
Sign up to set email alerts
|

Micelles Mediated Zone Fluidics Method for Hydrazine Determination in Environmental Samples

Abstract: An automated flow method for the determination of hydrazine based on the concept of zone-fluidics has been developed. The analyte reacts under flow conditions with p-dimethylamino benzaldehyde (25 mmol L−1) in micellar medium (100 mmol L−1 SDS) to form a stable derivative (460 nm). Micelles mediated catalysis excludes the use of highly acidic environment typical for this kind of reaction. Following careful examination of chemical and instrumental variables, the method allows the determination of hydrazine at t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 33 publications
0
1
0
Order By: Relevance
“…Among flow-based methods the concept of Zone Fluidics (ZF) offers some additional features including effective manipulation of reactants zones at the micro-liter level, adaptation of various chemistries through single channel configurations, minimization of waste generation, even efficient coupling to separation techniques as a front-end sample preparation platform [13,14]. ZF coupled to analytical derivatization have proven as an advantageous alternative to the development of robust and reliable methods for a variety of analytes such as hydrazine [15], adamantane derivatives [16], dopamine [17], creatinine [18], etc.…”
Section: Introductionmentioning
confidence: 99%
“…Among flow-based methods the concept of Zone Fluidics (ZF) offers some additional features including effective manipulation of reactants zones at the micro-liter level, adaptation of various chemistries through single channel configurations, minimization of waste generation, even efficient coupling to separation techniques as a front-end sample preparation platform [13,14]. ZF coupled to analytical derivatization have proven as an advantageous alternative to the development of robust and reliable methods for a variety of analytes such as hydrazine [15], adamantane derivatives [16], dopamine [17], creatinine [18], etc.…”
Section: Introductionmentioning
confidence: 99%