2023
DOI: 10.3389/fmats.2023.1289250
|View full text |Cite
|
Sign up to set email alerts
|

Metasurface-enabled electromagnetic illusion with generic algorithm

Rongrong Zhu,
Tianhang Chen,
Kai Wang
et al.

Abstract: Electromagnetic cloak or illusion, which can interfere with device detection and provide superior self-protection capabilities for animals or humans, has received much attention. The proposal of transformation optics provides a generalized strategy for realizing electromagnetic illusion. However, the complex parameter composition causes a substantial computational cost, which is not conducive to practical applications. To overcome these challenges, we report an intelligent illusory metasurface optimized by a g… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 32 publications
0
1
0
Order By: Relevance
“…It is a short cross-section of the state of the art presented for illustrative purposes only, i.e., without systematization, while the real number of applications, patents and research teams is hard even to guess since it increases on a daily basis. As far as the more advanced applications are concerned, some of them include optofluidic devices [100] for microreactors encompassing photocatalysis [101], lab-on-chip technologies [102]; optical tweezers for micro-and nanoparticle trapping and manipulation [103]; optical levers for atomic force microscopy [104]; biomedical imaging [105], e.g., optical coherence tomography [106], terahertz imaging [107]; super-resolution microscopy beyond the Abbe diffraction limit [108] including the use of superlenses and hyperlenses [109]; nonlinear optical devices for frequency conversion [110]; quantum optics [33] for quantum computing [111] and quantum cryptography [112]; stealth coatings [113]; optical cloaking devices (invisibility shields) [114,115], nonreciprocal cloaking (cloak that hides objects from the outside viewpoint but permits looking from the object outward) [116]; camouflage into virtual objects (electromagnetic illusions) [117,118]; and general transformation optics [119] (including its applications in, e.g., astrophysical all-optical simulation and the related models in other fields [120]).…”
Section: Uses Of Optical Metasurfacesmentioning
confidence: 99%
“…It is a short cross-section of the state of the art presented for illustrative purposes only, i.e., without systematization, while the real number of applications, patents and research teams is hard even to guess since it increases on a daily basis. As far as the more advanced applications are concerned, some of them include optofluidic devices [100] for microreactors encompassing photocatalysis [101], lab-on-chip technologies [102]; optical tweezers for micro-and nanoparticle trapping and manipulation [103]; optical levers for atomic force microscopy [104]; biomedical imaging [105], e.g., optical coherence tomography [106], terahertz imaging [107]; super-resolution microscopy beyond the Abbe diffraction limit [108] including the use of superlenses and hyperlenses [109]; nonlinear optical devices for frequency conversion [110]; quantum optics [33] for quantum computing [111] and quantum cryptography [112]; stealth coatings [113]; optical cloaking devices (invisibility shields) [114,115], nonreciprocal cloaking (cloak that hides objects from the outside viewpoint but permits looking from the object outward) [116]; camouflage into virtual objects (electromagnetic illusions) [117,118]; and general transformation optics [119] (including its applications in, e.g., astrophysical all-optical simulation and the related models in other fields [120]).…”
Section: Uses Of Optical Metasurfacesmentioning
confidence: 99%