Within the so-called "no-man's land" between about 150 and 235 K, crystallization of bulk water is inevitable. The glasslike freezing and a liquid-to-liquid transition of water, predicted to occur in this region, can be investigated by confining water in nanometersized pores. Here we report the molecular dynamics of water within the pores of a metalorganic framework using dielectric spectroscopy. The detected temperature-dependent dynamics of supercooled water matches that of bulk water as reported outside the borders of the no-man's land. In confinement, a different type of water is formed, nevertheless still undergoing a glass transition with considerable molecular cooperativity. Two different length scales seem to exist in water: A smaller one, of the order of 2 nm, being the cooperativity length scale governing glassy freezing, and a larger one (> 2 nm), characterizing the minimum size of the hydrogen-bonded network needed to create "real" water with its unique dynamic properties.