2020
DOI: 10.1021/acsami.0c01304
|View full text |Cite
|
Sign up to set email alerts
|

Metal Mimics: Lightweight, Strong, and Tough Nanocomposites and Nanomaterial Assemblies

Abstract: The ideal structural material would be high strength and stiffness, with a tough ductile failure, all with a low density. Historically, no such material exists, and materials engineers have had to sacrifice a desired property during materials selection, with metals (high density), fibre composites (brittle failure), and polymers (low stiffness) having fundamental limitations on at least one front. The ongoing revolution of nanomaterials provides a potential route to build on the potential of fibre-reinforced c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
10
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
3

Relationship

2
7

Authors

Journals

citations
Cited by 22 publications
(13 citation statements)
references
References 183 publications
(395 reference statements)
0
10
0
1
Order By: Relevance
“…Graphenederived materials have been applied to a vast range of applications, as diverse as structural composites, photonics, transistors, drug delivery, superconductors, sensors, nanofiltration, and isotopic enrichment. [9][10][11][12] To adapt graphene to these opportunities, the intrinsic properties are often manipulated using chemical functionalisation, for example, to open a band gap, or increase solubility, electronic conductivity, biocompatibility, or wetting/interfacial adhesion. In addition, a range of specific functions may be introduced, for example, by grafting a biomarker, a fluorophore, an (electro)catalyst, or sorbent.…”
Section: Introductionmentioning
confidence: 99%
“…Graphenederived materials have been applied to a vast range of applications, as diverse as structural composites, photonics, transistors, drug delivery, superconductors, sensors, nanofiltration, and isotopic enrichment. [9][10][11][12] To adapt graphene to these opportunities, the intrinsic properties are often manipulated using chemical functionalisation, for example, to open a band gap, or increase solubility, electronic conductivity, biocompatibility, or wetting/interfacial adhesion. In addition, a range of specific functions may be introduced, for example, by grafting a biomarker, a fluorophore, an (electro)catalyst, or sorbent.…”
Section: Introductionmentioning
confidence: 99%
“…Сочетание высокой прочности (до 1.5−2 GPa) и малой плотности (∼ 1500 kg/m 3 ) позволяет им с успехом вытеснять металлы и сплавы в конструкциях летательных аппаратов и ракетно-космической техники, автомобилей и маломерных судов, в спортивном инвентаре и изделиях для медицины, развлечений и быта [212]. Как правило, они конкурентоспособны в тех случаях, когда требуются высокие удельные механические характеристики (т. е. нормированные на плотность материала), и критерий низкой стоимости не стоит на первом месте [213,214]. Достаточно сказать, что содержание этих материалов в последних моделях лайнеров от компаний Boeing и Airbus доведено до 50% и более от сухой массы самолета.…”
Section: разрушение в микро- субмикрои наношкалеunclassified
“…T he assembly of nanomaterials into well-ordered, hierarchical structures is established as a route to improve properties [1][2][3] . The low-dimension allotropes of carbon, carbon nanotubes (CNTs) and graphene, are common nanomaterials for structural applications due to their high intrinsic mechanical properties, low densities, and supplementary functional properties such as high thermal/electrical conductivities.…”
mentioning
confidence: 99%