2018
DOI: 10.1080/00032719.2018.1483380
|View full text |Cite
|
Sign up to set email alerts
|

Mercury Speciation in Fish by High-Performance Liquid Chromatography (HPLC) and Post-Column Ultraviolet (UV)-Photochemical Vapor Generation (PVG): Comparison of Conventional Line-Source and High-Resolution Continuum Source (HR-CS) Atomic Absorption Spectrometry (AAS)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 17 publications
(8 citation statements)
references
References 33 publications
0
7
0
1
Order By: Relevance
“…Mercury (Hg 2+ ) can damage the brain, nervous system, kidneys and endocrine system. 1 In order to protect from and detect mercury contamination in the environment, scientists have used many techniques, including atomic absorption spectrometry (AAS), 2 atomic uorescence spectrometry (AFS), 3 microwave-induced plasma-atomic emission (MIP-AES), 4 inductively coupled plasma-mass spectrometry (ICP-MS), 5 inductively coupled plasma-atomic emission spectrometry (ICP-AES), 6 UV-vis spectroscopy, 7 high-performance liquid chromatography (HPLC) 8 and ion-selective electrodes (ISE). 9 All of the above methods are expensive, time-consuming and require sophisticated equipment.…”
Section: Introductionmentioning
confidence: 99%
“…Mercury (Hg 2+ ) can damage the brain, nervous system, kidneys and endocrine system. 1 In order to protect from and detect mercury contamination in the environment, scientists have used many techniques, including atomic absorption spectrometry (AAS), 2 atomic uorescence spectrometry (AFS), 3 microwave-induced plasma-atomic emission (MIP-AES), 4 inductively coupled plasma-mass spectrometry (ICP-MS), 5 inductively coupled plasma-atomic emission spectrometry (ICP-AES), 6 UV-vis spectroscopy, 7 high-performance liquid chromatography (HPLC) 8 and ion-selective electrodes (ISE). 9 All of the above methods are expensive, time-consuming and require sophisticated equipment.…”
Section: Introductionmentioning
confidence: 99%
“…(2) IC-ICP-OESIC-ICP-OES联用技术已用于Se、Cr等元素的形态分析中 [9,10] 。沉积物中硒的形态 分析,以正辛烷磺酸钠盐为离子对调节剂,在BIO Wide Pore RP-C 18 色谱柱上,实现了亚硒酸盐、硒 酸盐、硒代蛋氨酸、硒代胱氨酸、硒代酚胺和二甲基二硒化物的分离,ICP-OES与色谱系统耦合后用 于硒元素的在线检测 [7] 。 2.1.3 液相色谱与原子荧光联用 原子荧光AFS (Atomic Fluorescence Spectrometry,AFS)是目前常用的痕量元素检测技术之一, 具有维护和操作费用低, 能提供与ICP-MS相近的灵敏度, 且易于操作等优点。 色谱-氢化物发生(HG)-原子荧光光谱联用技术是目前检测分析硒形态的最重要且有效的技术手段之一。在测定水中的烷基 汞的研究中,将紫外光照射、氢化物发生/原子蒸发与高效液相色谱和原子荧光光谱法联用(HPLC-UV-CV/HG-AFS),建立了一种简便快捷、灵敏度高、选择性好的天然水中烷基汞的分析方法 [11,12] 。 利用高效液相色谱-双通道原子荧光联用同时进行砷和硒形态分析,在12 min内同时分离了三价砷 (As(III))、 一甲基砷(MMA)、 二甲基砷(DMA)、 五价砷(As(V))、 硒代胱氨酸(SeCys)、 硒代蛋氨酸(SeMet) 和四价硒(Se(IV))等化合物。实验结果表明,该方法可用于尿样及药品中砷和硒形态的分析 [13] 。 2.1. 4 液相色谱与原子吸收光谱联用 原子吸收光谱(Atomic Absorption Spectrometry,AAS)法是测定痕量和超痕量元素的有效方法之 一,由于其仪器结构简单、操作简便、易于掌握、价格便宜、分析速度快、耗费低、选择性好、精 密度高等优点,在冶金、地质、化工、医药、刑侦和食品卫生等领域得到了广泛应用。Linhart等开 发了一种紫外光化学发生器,能够将有机和无机汞柱后在线转化为冷蒸气(Hg0),随后通过石英管原 子吸收光谱法进行检测。采用反相高效液相色谱分离后成功检测到汞(II)、甲基汞、乙基汞和苯基汞 [14] 。 2.2 气相色谱联用技术 2.2.1 气相色谱-电感耦合等离子体质谱联用 气相色谱(Gas Chromatography,GC)-电感耦合等离子体质谱联用(GC-ICP-MS)分离效果好,分析 速度快,灵敏度高。与液相色谱联用技术相比,GC-ICP-MS无需雾化器,不会增加等离子体本底信 号,样品损耗率极低,常用于气体和低沸点化合物的分离分析,难挥发性物质的分析需要经过处理 使其挥发度增大。GC-ICP-MS可将复杂样品中的易挥发性待测元素提取出来,多用于汞、溴元素的 形态分析 [15,16] 。 分析无机汞、测量汞的总浓度及有机汞的浓度时,常用到GC-ICP-MS分析方法。同样的方法也 应用在锡物种的检测中 [16] ,经过微波消解和衍生化处理,能够在高有机含量的垃圾渗透液中分离出 甲基化、乙基化和丁基化锡化合物。 2.2.2 气相色谱-原子荧光联用 GC分离的样品以气体状态流出,可不经处理直接进入AFS仪器中,实现高效快速检测,在有机 汞、有机铅、有机锡、有机硒的分离检测中均有应用。 近几年关于有机汞的GC-AFS分析研究较多。有机汞最主要的形态有两种:甲基汞和乙基汞(其 中甲基汞的排放对生物的危害大),两者均不易挥发,大部分GC-AFS分离检测有机汞的方法是先将 甲基汞和乙基汞通过水相衍生化, 但因其衍生物很难直接被AFS仪原子化, 文献中多采用在GC和AFS 的仪器连接管路之间额外添加高温裂解加热装置,在高温下甲基汞和乙基汞的衍生化产物被裂解生 成气态汞原子,从而被检测。GC-AFS已用于测定海水中甲基汞 [17] 及生物样品中的甲基汞、乙基汞 [18] 等。 与有机汞不同,GC-AFS在有机硒化合物的检测中,可直接通过氩氢火焰作光源的GC-AFS仪器, 无需在两个仪器中添加额外的装置。已有研究构建了用于二甲基硒化物和二甲基二硒化物的形态 分析以及四甲基锡和四乙基铅的双通道同时测定的GC-AFS系统,实现了高效便捷的有机硒元素检 测 [19] 。…”
Section: 联用技术在元素形态分析中的应用unclassified
“…A second group of workers also report the use of UV assisted PV for Hg speciation this time interfacing the device between an HPLC column and two separate AAS detectors, one being a conventional line source instrument and the second being a continuum source instrument. 131 Mercury species were extracted from two fish tissue CRMs (ERM-CE464 tuna and NRCC DOLT-4 dogfish liver) using a variety of different reagents and heating techniques previously reported in the literature. Extraction using 6.25% v/v TMAH and 0.05 mol L −1 with heating and reflux at 75 °C for 30 minutes was chosen for further work due to its compatibility with the HPLC-UV-PG-AAS method used as the other methods evaluated caused either signal suppression or Hg species transformations.…”
Section: Elemental Speciation Analysismentioning
confidence: 99%