2023
DOI: 10.1101/2023.01.07.523124
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel

Abstract: Voltage gradient is a general physical cue that regulates diverse biological function through voltage-gated ion channels. How voltage sensing mediates ion flows remains unknown at the molecular level. Here, we report six conformations of the human Eag2 (hEag2) ranging from closed, pre-open, open, and pore dilation but non-conducting states captured by cryo-electron microscopy (cryo-EM). These multiple states illuminate dynamics of selectivity filter and ion permeating pathway with delayed rectifier property an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?