2023
DOI: 10.3389/fnmol.2022.1081288
|View full text |Cite
|
Sign up to set email alerts
|

Mechanism and effects of STING–IFN-I pathway on nociception: A narrative review

Abstract: Since the discovery of STING in 2008, numerous studies have investigated its functions in immunity, inflammation, and cancer. STING activates downstream molecules including IFN-I, NLRP3, and NF-κB. The STING–IFN-I pathway plays a vital role in nociception. After receiving the upstream signal, STING is activated and induces the expression of IFN-I, and after paracrine and autocrine signaling, IFN-I binds to IFN receptors. Subsequently, the activity of ion channels is inhibited by TYK2, which induces an acute an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 99 publications
(188 reference statements)
0
0
0
Order By: Relevance