Nickel additions to low alloy steels improve mechanical and technological properties. However, part 2 of the ISO 15156 Standard limits the nickel content to a maximum of 1 wt% in oil and gas environments containing H2S due to controversial concerns regarding sulfide stress cracking. The objective of this work was to investigate the effect of nickel in solid solution in the ferrite phase on hydrogen stress cracking resistance. Ferritic/pearlitic research-grade low alloy steels with nominal nickel contents of 0, 1, 2 and 3 wt% were tested by the slow strain rate test method with cathodic hydrogen charging to-1.05 and-2 VAg/AgCl. No difference in fracture mode or morphology was found between the alloys. However, the plastic elongation ratios and reduction in area ratios decreased with increasing nickel content when tested at-2 VAg/AgCl. The direct and indirect effects of nickel, such as the influence of an increasing fraction of pearlite with increasing nickel content, are discussed.